Advanced level 2024 CASPA mock mathematics with statistics 1
Advanced level 2024 CASPA mock mathematics with statistics 1
1. The value of x for which 42+π₯ β 8(22π₯) = 2π₯
4
is
A) β8
B) 1
C) β5
D) 5
2. Given that log6(π₯ + 2) β log6 π₯ = 2, then π₯ =
A) β 2
35
B) 2
35
C) β6
D) 1
18
3. Given that ππ₯+9
π₯(π₯β3)
β‘
π π₯
+ 4
π₯β3
, then the values of P
and Q are respectively
A) 1, 3
B) β3, 1
C) 1, β3
D) β1, β3
4. Given that f is a periodic function of period 4 and
that π(π₯) = {π₯π₯+2,20, 2β€β€π₯π₯<<24 then π(9) =
A) 1
B) 81
C) 11
D) 7
5. (π₯ + 1) + π₯β1
π₯2+1 is the result obtained by dividing
two polynomials. The remainder is
A) π₯ + 1
B) π₯ β 1
C) π₯2 + 1
D) 1 β π₯
6. Simplifying (π₯β2)!
(π₯β5)!5! gives
A) (π₯ β 3)(π₯ β 4)
B) (π₯β3)(π₯β4)
120
C) 1
120(π₯β5)(π₯β4)(π₯β3)
D) (π₯β2)(π₯β3)(π₯β4)
120
7. The set of values of x for which |π₯ π₯+ β3 4| = π₯ π₯+ β3 4 is
A) β3 < π₯ < 4
B) π₯ β€ β3 βͺ π₯ > 4
C) π₯ < β3 βͺ π₯ β₯ 4
D) π₯ β€ β3 βͺ π₯ β₯ 4
8. Given that the roots of the equation
βπ₯2 + ππ₯ β 2 = 0 differ by 1, then
A) π2 β 9 = 0
B) π2 β 12 = 0
C) π2 + 9 = 0
D) π2 + 12 = 0
9. The domain of definition of the function f(π₯) =
ππ(5π₯ β 2), π₯ β β is
A) β+
B) β β {2 5}
C) {π₯: π₯ > 2 5 , π₯ β β}
D) {π₯: π₯ < 2 5 , π₯ β β}
10. Given that k is a constant and that (1βsin π¦ π₯) ππ¦ ππ₯ =
(cos π¦ π₯)2, then y =
A) β2π₯ β 2 cos π₯ + π
B) βπ₯ β cos π₯ + π
C) β2π₯ β 2 cos π₯ + π
D) β2π₯ + 2 cos π₯ + π
11. The number of arrangements of the letters of the
word INSECT in which the vowels are together is
A) 720
B) 240
C) 120
D) 60
12. If the matrix (6 4 2 ββππ3 2 3 2) is singular,
then the value of k is
A β2
B 3
C β3
D 2
13. Given the complex number z = β1 + i, then
arg(z6) =
A) β 3Ο
2
B) 3π
2
C) β 9Ο
2
D) 9π
2
14. The sum of the first n terms of an arithmetic
progression is 187. Given that the first term is 2 and
the ππ‘β term is 32, the value of n is
A) 11
B) 6
C) 66
D) 67
15. For odd values of n, βn r=1(β1)r(2r + 1) is equal
to
A) 2 β n
B) n + 2n2
C) n β 2n