Ordinary level 2025 South West regional mock additional mathematics guide

Ordinary level 2025 South West regional mock additional mathematics guide

Ordinary level 2025 South West regional mock additional mathematics guide

MAKING QUIDE FOR MOCK- ADDITIONAL MATHEMATICS
0575 O/L – PAPER 2
SECTION A

Q. No REFERENCES AND SOLUTIONS MARKS COMMENTS
1 a) log2 (2 3π‘₯ π‘₯+ -1 2) = 1
⟹
2π‘₯+1
3π‘₯-2
= 21
⟹ 2π‘₯ + 1 = 6π‘₯ – 4 ∴ π‘₯ = 5
4
4 𝑀2 div.
1 for simplification
𝐴1
b) i) 𝛼 + 𝛽 = – 3
2
, 𝛼𝛽 = – 1
2
ii) π‘₯2 – (𝛼1 + 𝛽1) π‘₯ + 𝛼𝛽 1 = 0
π‘₯
2 – (𝛼𝛼𝛽 +𝛽) π‘₯ + 𝛼𝛽 1 = 0
π‘₯
2 – [(- 3 2) (- 2 1)] π‘₯ – 2 = 0
π‘₯
2 – 3π‘₯ – 2 = 0
∴
New Equation ⟹ π‘₯2 – 3π‘₯ – 2 = 0
1 0.5 for Sum
0.5 for Product
3 𝑀1
𝑀1
1
2 a) 10!
2!2!
= 5π‘₯9π‘₯4π‘₯7!ways = 907200 ways
4 𝑀3 – 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒
1
b) (π‘₯2 π‘₯1)9 ≑ βˆ‘9 π‘Ÿ=0 π‘›πΆπ‘Ÿ (π‘₯2)9-π‘Ÿ (- π‘₯1)π‘Ÿ
≑ βˆ‘ π‘›πΆπ‘Ÿ
9
π‘Ÿ=0
(π‘₯2)9-π‘Ÿ (- 1 π‘₯)π‘Ÿ π‘₯18-3π‘Ÿ(-1)π‘Ÿ
Term independent of π‘₯ is possible when π‘₯18-π‘Ÿ = π‘₯0
∴ π‘Ÿ = 6 𝐴1,
So 9𝐢6(-1)6 = 9𝐢6
4 𝑀1
𝑀1,
𝑀1,
𝐴1
3 (a)

Level 1 2 3 4 5 6 7 8 9 10
No of
Seat
100 200 300 400 500 600 700 800 900 1000

TOTAL = 100 +200 + 300 + ………………. + 900 + 1000 = 5500
As required

4 0.5 for copying
𝐴0.5×7
b.) AP with a =100 and d = 100, n = No. of levels
⟹ 𝑇
𝑛 = 100 + (𝑛 – 1)100 = 5500
⟹ 100𝑛 = 5500 ∴ π‘π‘œ. π‘œπ‘“ 𝑙𝑒𝑣𝑒𝑙𝑠, 𝑛 = 55
2 0.5 for d
M1
𝐴0.5
c) 𝑆55 = 55
2
(2(100) + (55 – 1)100) = 55[ 100 + 54(50)]
∴
154,000 Seats
2 𝑀1,
𝐴1

PDF is loading please wait...


Leave a comment

Your email address will not be published. Required fields are marked *

JOIN OUR WHATSAPP GROUP! / REJOIGNEZ NOTRE GROUPE WHATSAPP!
sponsors Ads