$x = t^2y = 2ct$. This tangent meets the x-axis in a point Q and the line through P parallel to the x-axis cuts the y-axis at a point R. Show that the area of triangle QOR, where O is the origin is a constant.

Express $\frac{2}{(1+x)(1+3x)}$ in partial fractions. Hence solve the differential equation 8.

 $\frac{dy}{dx} = \frac{2(y+2)}{(1+x)(1+3x)}$ given that y = -1 when x = 0.

Two lines are given by the equations $r = 17i + 9j + 9k + \lambda (3i + j + 5k)$, r = 15i - 8j - k +9. μ (4i + 3j), where λ and μ are scalar parameters. Find (a) the position vector of their point of intersection.

The cosine of the acute angle contained by the lines.

A vector parametric equation of the plane containing the lines. C.

Using the substitution $t^2 = x^2 + 3$, evaluate $\int_{0}^{1} \frac{xdx}{\sqrt{x^2 + 3}}$. 10i.

Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^3 x dx$. ii.

b.

JUNE 2003

- Express $4\sin x 3\cos x$ in the form R $\sin (x a)$, where a is an acute angle and R is 1. a positive real number. Find
- All solutions of the equation $4\sin x 3\cos x = 3$, in the interval $0^{\circ} \le x \le 360^{\circ}$, given your a. answers to the nearest degree.
- The greatest and least values of $\frac{1}{4\sin x 3\cos x + 6}$.

 Differentiate sinx with respect to x from first principles. b.
- 21.

Find $\frac{dy}{dx}$ if (a) $y = (x \sin x)^2$ (b) $y = \ln\left(\frac{1+3x^2}{1-\tan x}\right)$. ii.

With respect to the origin o, the points A,B C and D have position vectors (2i - j +k)m, 3. (3i + j + k)m, (2j - k)m and (1 - 2j - k)m respectively. Find

a vector equation of the line AB. a.

An equation of the plane BCD in the form r = a + sb + tc, where s and t are b. parameters. Show that the point A does not lie on the plane BCD. 4.

X	0.50	0.25	0.17	0.13	0.10	0.83	0.7
У	0.38	0.25	0.19	0.15	0.13	0.11	0.09

The table above shows corresponding values of x and y obtained experimentally. It is given that x and y are related by an equation of the form $\frac{1}{v} = \frac{1}{a} - \frac{b}{x}$, where a and b are

constants. By drawing a suitable linear graph relating 1/y and 1/x, estimate the value of a and b correct to two decimal places.

- Show that the equation $x^5 x^3 1 = 0$ has a root in the interval $1 \le x \le 2$. Use two 5i. iterations of the Newton-Raphson method to find an approximation to this root correct to 2 places of decimal.
- ii. Car numbers in the ten provinces of Cameroon are in the form AD1323H, where the two letters at the beginning show the province in which the car is registered, the 4 digits following the two letters are taken from the digits 0 to 9 inclusive and the letter at the end is one of the 26 letters of the alphabet. Given that the 4 digits must not all be zero, find the maximum number of cars, which can be registered in Cameroon using this system.