REGISTRATION CENTRE NUMI	BER CENTRE NAME			
CANDID	ATE'S FULL NAMES			
CANDIDATE IDENTIFICATION NUMBER	SUBJECT PAPER NUMBER 2 0515			
FOR OFFICIAL USE ONLY				
CAMEROON GENERAL CERTI	CAMEROON GENERAL CERTIFICATE OF EDUCATION BOARD ORDINARY			
LEV	EL EXAMINATION			
SUBJECT TITLE	SUBJECT CODE PAPER NUMBER			
CHEMISTRY	0515			
	EXAMINATION DATE: JUNE 2018			

Two and a half hours

Enter the information required in the boxes above.

This paper is arranged in three, A, B and C.

Section A: answer 4 questions out of 5;

Section B: answer 2 question out of 3 and

Section C: answer both questions

In calculations, you are advised to show all the steps in your working, giving your answer at each stage. Calculators are allowed

You are reminded of the necessity for good English and orderly presentation in your answers.

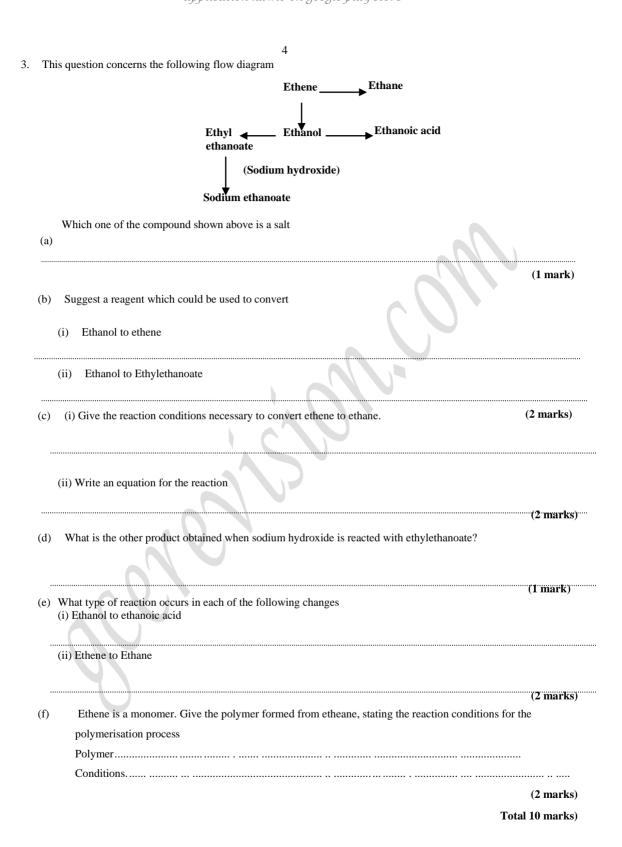
USEFUL DATA:

Relative Atomic Masses 1 Faraday = 96000 coulombs.

Hydrogen (H) = 1.0 Molar volume of a gas at r.t.p. = 24000cm^3 , Carbon (C) = 12.0 Specific heat Capacity of water = $4.2 \text{J/g/}^{\circ}\text{C}$ Oxygen (O) = 16.0 Avogadro Number = 6.02 xl0^{23}

Copper (Cu) = 64.0 0°C = 273K

Turn Over


SCORE

3-/0515/2/A/Q ©2018 CGCEB

SECTION A: Answer ALL questions in this sec

Ato	ns in substances are held together l	by chemical bonds,	
(a)	Define a chemical bond		
			(1 mark)
b)	Identify the bond type in each of	the following. substance	
i)	Magnesium chloride		
ii)	Ammonia		
iii)	Copper (Cu)		
			(3 marks)
c)	Show using diagrams how bonds	ing occurs in magnesium chloride	
•			
-			
-			
.1\		and other and one or the table hand to be	(3 marks
d)	Give two properties of Ammonia	a and relate each property to the bond type	
) wn	icn particles in copper are responsi	ble for conducting electricity?	(2 marks)
			(1 marks
			(Total= 10 marks

3 2. This question concerns Group I and II elements, Give the general or family name of group I and II elements Group I Group II (2 marks) (b) List two physical differences between the two groups of elements (2 marks) (c) (i) Give one similarity and one difference between sodium (Na) and magnesium (Mg) in their behaviour towards water. Similarity: Difference: (ii) Write a balanced equation for the reaction which occurs when sodium is added to water (3 marks) What type of oxides do elements of group I and II form? (1 mark) (e) Lithium (Li) in Group 1 period 2 resembles magnesium (Mg) in group II, period 3. Show how Li resembles Mg using two chemical equations. (2 marks) (Total=10marks)

	A: $CO_{(g)} + 2H_{2(g)} \rightarrow CH_3OH_{(g)}AH = +91Kmol^{-1}$	
••••	B: 2CH $_3$ OH $_{(i)}+$ 30 $_{2(g)}{\rightarrow}$ 2CO $_{2(g)}+$ 4H $_2$ O $_{(g)}$ AH= 384Kmo1 ⁻¹	
(a)	Define combustion	(1 m
(b)	(i) What does the symbol AH above represent?	
	(ii) From AH values, state the type of reaction taking place in each case	
	Type of reaction A	
	Type of reaction B	
		(3marks)
(c)	Represent reaction A on a well-labelled energy diagram.	
		(2 marks)
(d)	(i) Calculate the heat change if 16g of methanol were completely burnt.	(2 marks)
(d)	(i) Calculate the heat change if 16g of methanol were completely burnt.	(2 marks)
(d)	(i) Calculate the heat change if 16g of methanol were completely burnt.	(2 marks)
(d)	(i) Calculate the heat change if 16g of methanol were completely burnt.	(2 marks)
(d)	(i) Calculate the heat change if 16g of methanol were completely burnt.	(2 marks)

This question concerns the industrial production of ammonia and nitric acid (a) State the raw materials used in the production of (i) Ammonia (1 mark) (ii) Nitric acid (b) Write equations starting from the raw materials to illustrate the production of nitric acid. (c) State the catalyst needed in the production of nitric acid (d) Pure nitric acid is colourless but often it has a yellowish brown colour Explain (e) Ammonia and nitric acid are used for the production of fertilizers. State a fertilizer produced from (i) Ammonia (ii) Nitric acid		was lost determine the heat of combustion of methanol	
This question concerns the industrial production of ammonia and nitric acid (a) State the raw materials used in the production of (i) Ammonia (It mark) (ii) Nitric acid (It mark) (I			
(1 mark) (ii) Nitric acid (1 mark) (b) Write equations starting from the raw materials to illustrate the production of nitric acid. (3 mark) (c) State the catalyst needed in the production of nitric acid (1 mark) (1 mark) (2 mark) (1 mark) (1 mark) (1 mark) (2 mark) (1 mark) (1 mark) (2 mark) (1 mark) (2 mark) (1 mark) (2 mark) (2 mark) (2 mark) (3 mark) (1 mark) (2 mark) (2 mark) (2 mark) (2 mark)	(a)	State the raw materials used in the production of	(4 marks) tal 10 marks
(b) Write equations starting from the raw materials to illustrate the production of nitric acid. (3 mark) (c) State the catalyst needed in the production of nitric acid (1 mark) (4) Pure nitric acid is colourless but often it has a yellowish brown colour Explain (1 mark) (2 mark) (2 mark) (2 mark)	.,		(1 mark)
(c) State the catalyst needed in the production of nitric acid (1 mark) (d) Pure nitric acid is colourless but often it has a yellowish brown colour Explain (1 mark) (e) Ammonia and nitric acid are used for the production of fertilizers. State a fertilizer produced from (i) Ammonia (ii) Nitric acid (2mark)	(b)	Write equations starting from the raw materials to illustrate the production of nitric acid.	(1 mark)
(d) Pure nitric acid is colourless but often it has a yellowish brown colour Explain (1 mark (e) Ammonia and nitric acid are used for the production of fertilizers. State a fertilizer produced from (i) Ammonia (ii) Nitric acid (2mark	(c)	State the catalyst needed in the production of nitric acid	(3 mark
(e) Ammonia and nitric acid are used for the production of fertilizers. State a fertilizer produced from (i) Ammonia (ii) Nitric acid (2mark	(d)	Pure nitric acid is colourless but often it has a yellowish brown colour Explain	(1 marks
(2mark	(e)		
·		(ii) Nitric acid	
	(f)	Why is an all. glass apparatus used in the laboratory preparation of nitric acid?	(2marks

For more free past questions, answers and notes xisit http://www.gcerevision.com or download our android application kawlo on google play store

SECTION B

Answer any two questions. All questions carry equal marks. Where appropriate, equations and diagrams should be used to illustrate your answer. Write your answer on the sheets that follow section.

	(20 mark
Electrolysis is used in the industry to ma and one element and show the application	nufacture compounds and to purify elements. Choose one compound
and one element and show the application	(20 mark
e short notes on each of the following;	
(a) Polymerisation	
(b) Cracking	
(c) Isomerism	
(d) Saturated and unsaturated hydroca	(20 mark
	SECTION C
ANSWER	ALL QUESTIONS IN THIS SECTION
	apparatus and reagents: dilute hydrochloric acid 0.05M sodium hydroxide,
pipette, burette and phenolphthalein.	apparatus and reagents: dilute hydrochloric acid 0.05M sodium hydroxide, to determine the concentration of dilute hydrochloric acid.
pipette, burette and phenolphthalein.	
pipette, burette and phenolphthalein. You are required to design an experimen	
pipette, burette and phenolphthalein. You are required to design an experimen	to determine the concentration of dilute hydrochloric acid.
pipette, burette and phenolphthalein. You are required to design an experiment (i) Sketch the set-up used to determine the	to determine the concentration of dilute hydrochloric acid.
pipette, burette and phenolphthalein. You are required to design an experiment (i) Sketch the set-up used to determine the	to determine the concentration of dilute hydrochloric acid.
pipette, burette and phenolphthalein. You are required to design an experiment (i) Sketch the set-up used to determine the	to determine the concentration of dilute hydrochloric acid.
pipette, burette and phenolphthalein. You are required to design an experiment (i) Sketch the set-up used to determine the	to determine the concentration of dilute hydrochloric acid.
pipette, burette and phenolphthalein. You are required to design an experiment (i) Sketch the set-up used to determine the	to determine the concentration of dilute hydrochloric acid.
pipette, burette and phenolphthalein. You are required to design an experiment (i) Sketch the set-up used to determine the	to determine the concentration of dilute hydrochloric acid.
pipette, burette and phenolphthalein. You are required to design an experiment (i) Sketch the set-up used to determine the each container	to determine the concentration of dilute hydrochloric acid. e concentration of dilute hydrochloric acid indicate clearly the contents of
pipette, burette and phenolphthalein. You are required to design an experiment (i) Sketch the set-up used to determine the each container	to determine the concentration of dilute hydrochloric acid. e concentration of dilute hydrochloric acid indicate clearly the contents of (4 mark
pipette, burette and phenolphthalein. You are required to design an experiment (i) Sketch the set-up used to determine the each container	to determine the concentration of dilute hydrochloric acid. e concentration of dilute hydrochloric acid indicate clearly the contents of (4 mark 5 cm ³ of dilute hydrochloric acid into the conical flask

(1 mark) What colour change will occur in the beaker containing phenolphthalein Initial colour	li) State the use of pheno	8 lphthalein			
What colour change will occur in the beaker containing phenolphthalein Initial colour					
Initial colour				((1 mark)
Colour at end point) What colour chang	ge will occur in the beaker c	ontaining phenolphthalein		
The following table shows the results obtained by the students Burelle reading	Initial colour				
The following table shows the results obtained by the students Burelle reading	Colour at end poir	ıt			
Burelle reading Approximate First accurate Second accurate Final 20cm³ 16.1cm³ 15.7cm³ Initial 0.0cm³ 0.0cm³ 0.0cm³ Titre From the table above calculate the titre of the acid (1 mark) If 20cm³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl _(p)) and carbon dioxide (CO _{2(p)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(p))				(2	marks)
Final 20cm³ 16.1cm³ 15.7cm³ Initial 0.0cm³ 0.0cm³ 0.0cm³ Titre From the table above calculate the titre of the acid (1 mark) If 20cm³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl _(p)) and carbon dioxide (CO _{2(p)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))	The following table	e shows the results obtained	by the students		
Initial 0.0cm³ 0.0cm³ 0.0cm³ Fire From the table above calculate the titre of the acid (1 mark) If 20cm³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl _(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))	Burelle reading	Approximate	First accurate	Second accurate	
From the table above calculate the titre of the acid (1 mark) If 20cm³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl _(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))	Final	20cm ³	16.1cm ³	15.7cm ³	
From the table above calculate the titre of the acid (1 mark) If 20cm³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL(g))	Initial	0.0cm ³	0.0cm ³	0.0cm ³	
(1 mark) If 20cm³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL(g))	Titre				
(1 mark) If 20cm ³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl _(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))	From the table abov	e calculate the titre of the a	cid		
If 20cm³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL(g))					
If 20cm³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL(g))					
If 20cm³ of dilute hydrochloric acid was used for the titration, write the equation of the reaction taking place and calculate the concentration of dilute hydrochloric acid. (3 marks) What type of reaction is this? (1 mark) You are given two gases: hydrogen chloride (HCl(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL(g))					
You are given two gases: hydrogen chloride (HCl _(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))					
You are given two gases: hydrogen chloride (HCl _(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))					
You are given two gases: hydrogen chloride (HCl _(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))				(3	marks)
You are given two gases: hydrogen chloride (HCl _(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))) What type of reaction	is this?			
You are given two gases: hydrogen chloride (HCl _(g)) and carbon dioxide (CO _{2(g)}). Draw an experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))					
experimental set up that could be used to dissolve each of these gases in water. (HCL _(g))					(1 mark)
(HCL _(g))					
(2 marks)	experimental set up	that could be used to disso.	ive each of these gases in wa	ater.	
	(HCL _(g))				
CO _{2(g)}				(2	, marks)
	$CO_{2(g)}$				
(2marks)				y <u>x</u>	

(c) You are provided with the following mixtures: sulphur/Iron fillings, Kerosene/water and green pigment of a leaf. State the separating method you would use to separate each mixture

Mixture	Method of separation
Sulphur/Iron fillings	
Kerosene/water	
Green pigments of leaves	

(3marks)

Total =20 marks

10. (a) Below is a table of some procedures and observations carried out to analyse compounds A,B,C and D. Read the procedures and observations carefully and draw the necessary and logical conclusion as requested in the questions that follow.

Procedure/observation	Conclusion
(i)-To 2cm³ of a solution of compound A in a test- tube is added 2cm³ of AgNO _{3(aq)}	Which ion is present in compound A?
-A white precipitate is formed	(1 mark)
(ii) To 2cm³ of a solution of compound B in a test-	Identify the ion present in compound B?
tube is added drops ofNaOH _(aq) -A green precipitate formed	Write an ionic equation to show the formation of this precipitate
	(2 marks)
(iii)- To 2cm³ of a solution of compound A in a test- tube is added solid PCl5 -White fumes of HCl(g) are	Which functional group is present in compound C
produced	Give an example of a compound with this functional group
	(2 marks)
(iv) -To 2cm³ of a solution of compound D in a test-	Which functional group is present in compound D?
tube is added bromine water -Bromine water is decolorised	Give an example of a compound with this functional group
	(2marks)

(b) While carrying out a flame test on a compound W, a bluish flame is observed and on heating W, the compound decomposes producing a brown gas X and another gas Y, that rekindles a glowing splint.

(i) Which cation in compound W is responsible for the blue flame?	
(ii) Identify gases X and Y	
Gas Y	
Identify compound W	
Compound W:	
(iv) Write an equation for the decomposition of W.	V
(c) Into 3 different test-tubes, A, B and C, containing 2cm³ of unknown solutions K,L and M. 2cm³ of aci	4 marks)
BaCl ₂ solution was added into each of the 3 test-tubes.	
(i) In test-tube A, a white precipitate is immediately formed	
Identify the likely ion present in solution	
	(1 mark)
(ii) In test-tube B an effervescence occurs, producing a colourless gas that decolorises acidified $KMno_4$	
Identify the gas evolved and the ion present in solution Describe a simple laboratory test for this g	gas
Gas evolved	
Ion present	
	5 marks)
(iii) In test-tube C, effervescence occurs producing a gas commonly used in fire extinguishers. Descri	be a
simple laboratory test for this gas.	
simple modimory test for this gas.	
Test,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	3 marks)

3-/0515/2/A/Q

(Total =20 marks)