GCE ADVANCE LÉVEL PHYSICS 2013 PAPER 2

JUNE 2013

- 1. (a) Compare the images formed by a diverging lens and a converging lens, both of focal length 20 cm, if an object is placed 12 cm from each of them.
 - (b) Why is a frequency modulated signal system preferred to an amplitude modulated signal system in communication?
- 2. A 1500 μF capacitor is fully charged using a 100V dc power supply. It is disconnected from the power supply and connected to an uncharged 1000μF capacitor.
 - (a) Calculate the p.d across the terminals of the capacitor.
 - (b) Calculate the initial and final energy stored in the capacitors.
 - (c) Why is there loss in energy?

3.

- (i) The current I_1 and I_2 .
- (ii) The p.dacross AB

4.

- (i) What is a p-type semi-conductor?
 - The figure 2 shows a transistor in the common emitter mode. The transistor has the following characteristics $V_{BE} = 0.62 \text{ V}$, $h_E = 100$. The input resistance $R_1 = 60 \text{ k}\Omega$ and the load resistance $R_2 = 600\Omega$.
- (ii) Calculate the current through the load.
- (iii) Calculate V_{CE}
- 5. Distinguish between liquids and gases using
 - (i) intermolecular forces and
 - (ii) The kinetic theory of matter.

SECTION II ONE HOUR ANSWER ALL QUESTIONS

ANSWER either 8 (a), (b) and (c) OR 8 (d), (e) and (f)

EITHER

- 6. (a) (i) Explain what is meant by the thermometric property of a substance?
 - (ii) State two qualities which can make the thermometric property suitable for temperature measurements.

- (iii) The melting point of a metal is measured using a resistance thermometer and a constant pressure gas thermometer. Explain whether the values obtained would be the same or different.
- (b) Describe an experiment to determine the specific latent heat of vaporization of water. Your account should include a diagram, procedure, precautions, observations and conclusions
- (c) (i) A piece of metal block of mass 0.8kg and specific heat capacity 455 Jkg⁻¹K⁻¹ is initially heated in a furnace. The block is then immersed in 1.2 kg ice in an ice container and equilibrium temperature of 48°C is obtained. Calculate the initial temperature of the metal block.
 - (ii) Explain whether all electrical insulators are necessarily good thermal insulators.

OR 8 (d), (e) and (f)

- (d) (i) State the laws of electromagnetic induction.
 - (ii) An electron of charge, e, and mass, m, enters a uniform magnetic field B of value 2.0 x 10⁻³T as shown in figure 3 and moves with a speed v.

Figure 3

Copy figure 3 into your answer bookier and indicate the path the electron takes in the field.

- (iii) Calculate the number of revolutions per second made by the electrons.
- (e) Describe an experiment to determine the specific charge of an electron. Your account should include a diagram, procedure, observations and conclusion.

Figure 4 shows two bulbs X and Y connected to a supply E. The inductance of L is 6.0×10^{-3} H, the resistance of R is 2.0Ω while the resistance of the bulbs X and Y are each 2.0Ω .

- (i) Calculate the current in Y when it is fully lighted.
- (ii) Sketch, on the same axes, graphs to show how the p.d across X and Y vary with time.

ANSWER either 9 (a), (b, (c)and (d) OR 8 (e), (f) and (g) EITHER

7.

- (a) Define stopping potential
- (b) Use Einstein photoelectric equation to explain
 - (i) Why for a particular metal electrons are emitted only when the frequency of the incident radiation is greater than a certain value.
 - (ii) Why the maximum speed of the emitted electrons is independent of the intensity of the incident radiation.

(c) Figure 5 shows how the frequency (f) of incident radiation on a metal surface varies with the energy of the emitted photoelectrons.

 $\begin{array}{c} f \, / \, 10^{14} \\ Hz \end{array}$

- (i) From the graph, determine the threshold frequency and calculate the maximum wavelength of the emitted electrons.
- (ii) Calculate values for the
 - Plank's constant
 - Work function of the metal in joules.
 - (d) An X-ray photon has a wavelength of 3.0×10^{-10} m. calculate the values for
 - i) Momentum
 - (ii) Energy
 - Mass of the particle associated with the proton which moves at the speed of light.

OR 9.

(e) (i) define time constant

Figure 6 shows how a resisitor R and a capacitor may be connected in a circuit.

- (ii) Calculate the time constant and explain how its value could be increased.
 - (f) Figure 7 shows the displacement time graph for a vibrating system.

- (i) Explain whether the motion is simple harmonic or not.
 - Use the graph to calculate
- (ii) The amplitude and frequency of oscillation.
- (iii) Write the wave equation for the motion described in figure 7.
- (g) (i) Sketch a graph to show the velocity changes with time for the motion above
 - (ii) Compare nuclear fission and nuclear fusion as sources of energy.

SECTION III

30 Minutes

8. The table below gives the force, F, between a pair of molecules in a solid at various separations, r.

Force, F/ 10 ⁻⁷ N	Separation, r /10 ⁻¹⁰ m
8.8	0.1
5.6	0.26
0.8	0.34
-2.0	0.42
-5.0	0.52
-8.0	0.8
-6.6	1.2
-4.0	1.34
-2.0	1.5
-0.8	1.8
-0.4	1.9

- (a) Draw a graph of F against r for a pair of molecules.
- (b) (i) From your graph, determine the molecular spacing for the molecules at equilibrium separation.
 - (ii) Calculate the energy used to separate the molecules completely
 - (iii) What is the physical significance of the energy calculated in (ii).
- (c) How can your graph be used to explain that at some point
 - (i) Hooke'slawisobeyed
 - (j) The vibration of the molecules is simple harmonic.