GCE ADVANCE LEVEL FURTHER MATHEMATICS 2000 PAPER 3

JUNE 2000

- i) The coordinates of the point *K. L* and M are (3,0), (9,0) and (9.9) respectively and *LOMN*, where O is the origin, is a uniform square. Find the x-coordinate of the centre of the centre of gravity of the lamina bounded by *KL*, *LM*, *MN* and the arc *NK* of the curve y=9-x².
- ii) A particle moves at constant speed on the smooth inner surface of a fixed spherical bowl of radius 2m. The particle describes a horizontal circle at a distance 6/5 m below the centre of the bowl. Find the speed of the particle as it describes the horizontal circle.

 (Take g as 10ms².)
- 2. i) The distance between two towns A and B is 8 km. A car passes through town A at a speed of 10ms⁻¹ with a uniform acceleration of magnitude of X ms⁻². It maintains this acceleration until it attains a speed of 30ms⁻¹. It then travels at this speed for some time and then decelerates uniformly at 3» ms² reaching B at a speed of 10ms⁻¹. Find
 - a) the value of X,
 - b) the distance travelled at 30ms¹.
 - (ii) A particle moves in a straight line with an acceleration of magnitude 4/1+V MS⁻¹ where
 - v ms¹ is the speed of the particle when it has covered a distance of xm. Find the distance covered from rest by the particle before it attains the speed of 2ms¹.
- 3. A block P of mass 80kg rests on a smooth horizontal table and is attached by light inelastic strings to blocks Q and R of mass 10kg and 70kg respectively. The strings pass over light smooth pulleys on opposite edges of the table so that Q and R hang freely. The system is released from rest. Determine
 - b) the magnitude of the acceleration of the system,
 - c) the tension T_1 and T, acting on block P.
 - Block R falls a distance of 2m and is brought to rest. Given that P remains on the table and that the string joining Q to P is long enough that Q cannot be stopped by the edge of the table, calculate the further distance that Q covers vertically upwards before momentarily coming to rest. (Take g as $10ms^{-2}$.)
- 4. A small sphere A, of mass 2m kg moving on a smooth horizontal floor with speed u ms¹, strikes directly another sphere B, of mass m kg, initially at rest on the floor. Given that the coefficient of restitution between A and B is 0.25, and that the impact lasts for 0.2 second, find in terms of u the speeds of A and B after impact. Also determine in terms of m and u

the magnitude of the impulse of the impact on A, the magnitude of the force exerted on B by the impact, the kinetic energy lost in the impact. ¹

5.

A particle is projected with speed 70ms^1 from a point O. It hits a target 480m away on the horizontal **plane through its point of projection. Determine** α **and** β **the two possible angles** of projection. Given that T_1 and T_2 are the times of flight for the angles of projection a and p respectively, find the ratio

 $T_1:T_2$,

H₁:H₂. where H₁ and H₂ are the maximum heights attained corresponding to the angles of projection α and β respectively.

(Take g as 9.8 ms^{-2} .)

(a) A uniform ladder, of length 31 and weight W, rests against A smooth vertical wall. The foot of the ladder rests on a rough horizontal floor, so that ladder makes an angle $\tan^{-1}4$ with the horizontal floor. Given that the ladder is in the verti.es; plane which is perpendicular to the wall, find the least possible value of μ , the coefficient of friction between the floor and the ladder, if the ladder is in equilibrium.

Given that the coefficient of friction between the ladder and the ground is 2/15 .find how far up from the up from the foot of the ladder a person, of weight W, can climb without the ladder supping.

 $\sin -1 3/5$

7. i) A car, of mass 1500kg. starts from rest and climbs up a road inclined at an angle to the horizontal. With an acceleration of 3/10 ms. The coefficient of friction between the

road and the tyres of the ear is ¹/₄ Calculate the tractive force of the engine. Find also, the rate at which the engine of the car is working 5 seconds from the start of motion.

A pump working at me rate of 8.04 kW, raises 1800kg of water per minute from a depth of 25m. Determine the speed at which the water is delivered. (Take g as 10ms⁻²)

(a) In a certain town there axe 1- 'handicapped citizens, 900 of whom are blind while 600 are dumb. It is known that 5⁰ c of those who are blind but not dumb, 75% of those who are dumb but not blind and 85% oi those who are both dumb and blind, have the AIDS-Virus. A handicapped citizen is selected at random. Find the probability that the citizen

has the AIDS-Virus.

is blind given that he has the AIDS-Virus,

- (e) is either blind or has the AIDS-Virus.
- 8. is dumb given that he does not have the AIDS-Virus.