UNEB UACE PHYSICS PAPER 1 2018

SECTION A

- 1. a) What is meant by **relative velocity**?
- b) A ship is heading due-north at a speed of 30kmh-1. Water in the lake is moving in the north-east direction at an average speed of 5kmh⁻¹.

Calculate the:

- i) velocity of the ship
- ii) distance off course the ship will be after 40 minutes
- c) i) Explain why a passenger in a car jerks forwards when the brakes are suddenly applied.
- ii) Use Newton's second law to define the Newton
- d) Three forces of 8.0N, 12.5N and 2.0N act on a body of mass 0.7kg as shown in figure 1.

Calculate the acceleration of the body.

- 2. a) What is meant by centre of mass?
- b) Explain why a long spanner is preferred to a short one in undoing a tight bolt.
- c) A uniform ladder of length 10m and weight 400N, leans against a smooth wall and its foot rests on rough ground. The ladder makes an angle of 600 with the horizontal.

If the ladder just slips when a person of weight 800N climbs 6m up the ladder, calculate the:

- i) reactions of the wall and the ground
- ii) distance another person of weight 600N can climb so that the same reactions are exerted as in (c) (i).
- d) i) State the principle of conservation of energy.
- ii) How does the principle in (d) (i) apply to a child sliding down an incline?
- c) A pump with power output of 147.1 W can raise 2 kg of water per second through a height of 5m and deliver it into a tank. Calculate the speed with which the water is delivered into the tank.
- f) Explain the effect of a couple on a rigid body.
- 3. a) What is meant by a
- i) brittle material?
- ii) ductilematerial?

- b) Give one example of each of the materials in (a)
- c) Explain why bicycle frames are hollow.
- d) i) Sketch a labeled graph of stress against Strain for a ductile material
- ii) Explain the main features of the graph in (d) (i)
- e) Derive the expression for the energy stored per unit volume in a rod of length, L, Young's Modulus, Y, when strectched through distance, e
- f) A load of 5kg is placed on top of a vertical brass rod of radius 10mm and length 50cm. If Young Modulus of brass is
- $3.5 \times 10^{10} \text{ Nm}^{-2}$

Calculate the:

- i) decrease in ength
- ii) energy stored in the rod
- 4a) Define the following:
- i) Angular velocity
- ii) Period
- b) An object moves in a circular path of radius, r, with a constant speed, V. Derive an expression for its acceleration.
- c) i) State two factors on which the rate of flow of a fluid through a tube depends
- ii) Describe an experiment to measure the coefficient of viscosity of a liquid using Poiseulle's formula.
- d) Find the time taken for an oil drop of diameter 6.0×10^{-3} mm to fall through a distance of 4.0cm in air of coefficient of viscosity 1.8×10^{-5} Pa. (The density of oil and air are 8.0×10^{2} kgm⁻³ and 1 kg m^{-3} respectively)

SECTION B

- 5. a) Define the following quantities
- i) Thermometric property
- ii) Specific heat capacity
- b) i) State two examples of commonly used thermometric properties.
- ii) Describe briefly how to determine the lower and upper fixed points for an uncalibrated liquid-in-glass thermometer.
- c) i) Describe with the aid of a diagram, an experiment to determine the specific heat capacity of a liquid using the continuous flow method
- ii)State two advantages of the continuous flow method over the method of mixtures.
- iii) State two disadvantages of the method in (c) (i)
- d) The brake linings of the wheels of a car of mass 800kg have a total mass of 4.8kg and are made of a material of specific heat capacity 1200J kg⁻¹ K⁻¹. If the car is at 15mS⁻¹ and is brought to rest by applying the brakes, calculate the maximum possible temperature rise of the brake linings.
- 6. a) i) What is meant by conduction of heat?
- ii) Explain why mercury conducts heat better than water
- iii) Explain the occurrence of and sea breezes.

- b) A copper sphere of radius 7cm and density 900kg m⁻³, is heated to a temperature of 127^oC and then transferred to an evacuated enclosure whose walls are at a temperature of 27^oC. Calculate the:
- i) net rate of loss of heat by the copper sphere
- ii) temperature of the copper sphere after 5minutes
- c) Explain why heating systems based on the circulation of steam are more efficient than those based on the circulation of boiling water.
- 7a) i) What is meant by a black body?
- ii) Give two examples of a black body
- b) With the aid of graphs, describe how radiation emitted by a black body varies with wavelength for two temperatures.
- c) i) Define thermal conductivity
- ii) Describe an experiment to determine the thermal conductivity of glass.
- d) Radiation from the sun falls normally on a blackend roof measuring 20m x 50m. If half of the solar energy is lost in passing through the earth's atmosphere, calculate the energy incident on the roof per minute.

(Temperature of the sun's surface = 6000K; radius of the sun = 7.5×10^8 m; distance of the sun from the earth = 1.5×10^{11} m.)

SECTION C

- 8. a) Define the following
- i) Binding energy
- ii) Unified Atomic Mass Unit
- b) Explain how energy is released in a nuclear fusion process.
- c) Explain what is observed in a discharge tube when the pressure is gradually reduced to low values.
- d) With the aid of a labeled diagram, describe the operation of Bainbridge mass spectrometer in the determination of charge to mass ratio.
- e) An ion of mass 2.6×10^{-26} kg moving at a speed of 4.0×10^4 ms⁻¹ enters a region of uniform magnetic field of flux density 0.05T. Calculate the radius of the circle described by the ion.
- 9. a) i) State three differences between X-rays and cathode rays.
- ii) Describe using a labeled diagram, the mode of operation on X-ray tube
- iii) What is difference between soft and hard X rays
- b) i) What is the main distinction between work function and ionization energy?
- ii) An electron of charge, e, enters at right angles into a uniform magnetic field of flux density B and rotates at a frequency, f, in a circle of radius, r

Show that the frequency, f, is given by

$$f = \frac{Be}{2\pi m}$$

c) An X-ray beam is produced when electrons are accelerated through 50kV are stopped by the target of an X-ray tube. When the beam falls on a set of parallel atomic planes of a certain metal at a glancing angle of 16⁰, a first order diffraction maximum occurs.

Calculate the atomic spacing of planes.

- 10.a) State two differences between alpha and beta particles
- b) Describe with the aid of a diagram. the structure and mode of operation of an ionization chamber.
- c) i) Explain the application of carbon -14 in carbon dating
- ii) A sample of dead wood was found to have activity of 20 units due to carbon 14 isotope whose half-life is 5600 years.

If activity of wood just cut is 47.8 units, estimate the age of the sample.

- d) The photoelectric work function of potassium is 2.25 eV. Light having a wavelength of 360mm falls on a potassium metal.
- i) Calculate the stopping potential
- ii) Calculate the speed of the most energetic electrons emitted by the metal.