Centre Number Number

Candidate Name

## **EXAMINATIONS COUNCIL OF ZAMBIA**

Examination for General Certificate of Education Ordinary Level

Physics 5054/2

Paper 2

Monday

31 JULY 2017

Additional Information:

Graph paper Electronic calculator/Mathematical tables Answer Booklet

Time: 2 hours

#### Instructions to Candidates

Write your name, centre number and candidate number in the spaces at the top of this page and on the Answer Booklet used.

### Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

### Section B

Answer any three questions.

Write your answers in the separate Answer Booklet provided. At the end of the examination:

- fasten the Answer Booklets used securely to the question paper,
- 2 circle the numbers of the Section B questions you have answered in the grid on the bottom right side corner.

### Information for candidates

The number of marks is given in brackets [ ] at the end of each question or part question. Candidates are reminded that all quantitative answers should include appropriate units. Circle the questions answered in Section B in the grid.

| William Committee of the Committee of th |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Examiner's

lise

Candidate's

Use

Candidates are advised to **show all their working** in a clear and orderly manner, as more marks are awarded for correct working than for correct answers.

Cell phones and laptops/tablets are not allowed in the examination room.

# Section A [50 marks]

# Answer all the questions in the spaces provided on the question paper.

| 1 | A lear | rner cai   | rried out an experiment to determine the density of ethanol and |     |
|---|--------|------------|-----------------------------------------------------------------|-----|
|   | obtair | ned the    | following results. The learner used a bottle of known volume.   |     |
|   | Mass   | of emp     | ty glass bottle = 242g                                          |     |
|   | Mass   | of bott    | le filled with water = 992g                                     |     |
|   | Mass   | of bott    | le filled with ethanol = 857g                                   |     |
|   | (a)    | <b>(i)</b> | What mass of water was used to fill the bottle?                 |     |
|   |        |            |                                                                 | [1] |
|   |        | (ii)       | What mass of ethanol was used to fill the bottle?               |     |
|   |        |            |                                                                 | [1] |
|   | (b)    | Calcu      | late the relative density of the ethanol.                       |     |
|   |        | *******    |                                                                 |     |
|   |        |            |                                                                 | [2] |
|   | (c)    | If the     | e density of water, under the conditions of the experiment was  |     |
|   |        | 1g/cr      | m³, calculate;                                                  |     |
|   |        | (i)        | the density of ethanol                                          |     |
|   |        |            |                                                                 |     |
|   |        |            |                                                                 |     |
|   |        |            |                                                                 |     |

|   |        | (ii)             | capacity of the bottle                              |                                         |     |
|---|--------|------------------|-----------------------------------------------------|-----------------------------------------|-----|
|   |        |                  |                                                     | *************************************** |     |
|   |        |                  |                                                     |                                         |     |
|   |        |                  |                                                     | *******************                     |     |
|   |        | V                |                                                     |                                         | [2] |
|   |        |                  |                                                     | [Total: 7 ma                            |     |
|   |        |                  |                                                     | [                                       |     |
| 2 | Figu   | r <b>e 2.1</b> s | shows a van of mass 2500kg moving from level A      | to level B.                             |     |
|   |        |                  | velocity of 20m/s, the van reached point B in 5 s   |                                         |     |
|   | distar | nce betv         | veen <b>A</b> and <b>B</b> is 25m.                  |                                         |     |
|   | ñ      |                  |                                                     |                                         |     |
|   | 17     |                  |                                                     |                                         |     |
|   |        |                  |                                                     |                                         |     |
|   |        |                  |                                                     |                                         |     |
|   |        |                  |                                                     |                                         |     |
|   |        |                  |                                                     |                                         |     |
|   |        |                  |                                                     |                                         |     |
|   |        |                  |                                                     | В                                       | -   |
|   |        |                  | Figure 2.1                                          | D                                       |     |
|   | (a)    | Calcula          | ate the work done by gravitational force to bring t | he van to the                           |     |
|   | . ,    |                  | level <b>B</b> . (Take $g = 10N/kg$ )               | TO TOTAL                                |     |
|   |        |                  |                                                     |                                         |     |
|   |        | *******          |                                                     | *************************************** | ••• |
|   |        | *********        |                                                     |                                         |     |
|   |        | •••••            |                                                     |                                         |     |
|   |        |                  |                                                     |                                         | [2] |
|   | (b)    | How h            | igh was the car on level <b>A</b> of the road?      |                                         |     |
|   |        |                  |                                                     |                                         | 0   |
|   |        | ******           |                                                     |                                         |     |
|   |        |                  |                                                     |                                         |     |
|   |        |                  |                                                     |                                         | F07 |
|   |        |                  |                                                     | ***************                         | [2] |

Physics/5054/2/2017

[Turn over

(c) Before reaching point **B**, the van briefly stopped halfway between points **A** and **B**. What is the value of the frictional force which made the van stop half way downhill?

(d) Calculate the acceleration of the van downhill.

[2]

[7]

[7]

[7]

[7]

**Figure 3.0.** below shows a 30kg crate being dragged up a ramp of length 20m using a 150N force. The height of the ramp is 5m.



Figure 3.0

(a) Calculate;

(i)

(ii)

| the velocity ratio of the system       |     |
|----------------------------------------|-----|
|                                        |     |
|                                        |     |
|                                        | [1] |
| the mechanical advantage of the system |     |
|                                        |     |
|                                        |     |
|                                        | [1] |

| (b) | Find the work done against gravity          |     |
|-----|---------------------------------------------|-----|
|     |                                             |     |
|     |                                             | [1] |
| (c) | What is the efficiency of the ramp?         |     |
|     |                                             |     |
|     |                                             |     |
|     |                                             | [2] |
| (d) | Calculate the angle of inclination $\theta$ |     |
|     |                                             |     |
|     |                                             |     |
|     |                                             |     |
|     |                                             | [2] |

[Total: 7 marks]

# Page 6 of 12

|       | rner sees a flash of lightning in a distance and hears the thunder clap                 |      |
|-------|-----------------------------------------------------------------------------------------|------|
| 4 sec | onds later.                                                                             |      |
| (a)   | Which one is produced first, the lightning flash or the thunder clap?                   |      |
| (b)   | If the speed of sound is 320m/s, how far away was the storm from where the learner was? | [1]  |
|       |                                                                                         |      |
|       |                                                                                         | [2]  |
| (c)   | After the storm was over, a rainbow was seen in the sky. Name                           |      |
| ٠     | the <b>two</b> outer most colours in the rainbow.                                       | [1]  |
| (d)   | Orange light has a wavelength of 0.6 micrometers (0.6 $\mu$ m).                         |      |
|       | Calculate the frequency of orange light. (Taking $1\mu m = 1 \times 10^{-7} m$ )        |      |
|       |                                                                                         |      |
|       |                                                                                         |      |
|       |                                                                                         | רכן  |
|       |                                                                                         | [2]  |
|       | [Total: 6 ma                                                                            | rksj |



Figure 5.1

| (a) | (i)           | Explain why in <b>Figure 5.1</b> , the ball is displaced from the vertical position.     |            |
|-----|---------------|------------------------------------------------------------------------------------------|------------|
|     | (ii)          | What happens if the ball is allowed to touch the rod? Explain.                           | [2]        |
| (b) | Figui         | re 5.2 below shows balloons with charges.                                                | [2]        |
|     | -             | Figure 5.2                                                                               |            |
|     | What<br>charg | are the charges on balloons <b>A</b> and <b>C</b> if balloon <b>D</b> is positively ged? |            |
|     |               | [Total: 5 mark                                                                           | [1]<br>[5] |

Physics/5054/2/2017

[Turn over

Figure 6.1 shows a 60V battery connected to five resistors as shown below.



| (a) | What is the total resistance in the circuit?                   |     |
|-----|----------------------------------------------------------------|-----|
|     |                                                                | [2] |
| (b) | What is the charge passing through the lamp in 4 seconds?      |     |
|     |                                                                |     |
|     |                                                                |     |
| (c) | Calculate the current passing through the $12\Omega$ resistor? | [2] |
|     |                                                                |     |
|     |                                                                |     |
|     |                                                                | [1] |
| (d) | Calculate the power of the battery.                            |     |
|     |                                                                |     |
|     |                                                                |     |
|     |                                                                | [1] |
|     | [Total: 6 ma                                                   |     |

**Figure 7.1** shows a stream of beta particles entering the space between a North and South Pole of a very strong magnet.



Figure 7.1

| (a) | State and explain the behaviour of the beta particles as they pass in the |     |
|-----|---------------------------------------------------------------------------|-----|
|     | space between the two poles of the magnet.                                |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           | [3] |
| (L) |                                                                           | 1~1 |
| (b) | State the difference in behaviour if the radiation had been alpha         |     |
|     | particles or gamma rays.                                                  |     |
|     | Alpha                                                                     |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     | Gamma                                                                     |     |
|     |                                                                           | [2] |
|     |                                                                           | r~] |
|     | [Total: 5 mar                                                             | ve1 |

(b)

**8 Figure 8.1** below shows a garden pond containing a small fountain.



- (a) The pressure of the water increases with depth.
  - (i) Explain the meaning of pressure.

|         |                                                                        | [1] |
|---------|------------------------------------------------------------------------|-----|
|         | Explain why the pressure below the water surface increases with depth. |     |
|         |                                                                        |     |
|         |                                                                        | [2] |
| Describ | be energy changes that occur within the pump.                          |     |
|         |                                                                        |     |

[Total: 6 marks]

[3]

### Section B [30 marks]

## **Answer any three questions**

## Each question carries 10 marks

**9 Figure 9.1. shows** a thermocouple being used to measure the temperature at a point on a hot plate.



Figure 9.1

- (a) Explain how a thermocouple is used to measure temperature and why it is capable of measuring very high temperatures.
- (b) A thermocouple is used to measure the temperature of a Bunsen burner flame. Its readings are found at six different temperatures of the hot junction. The results are recorded in the table below.

| Current in mA     | 0 | 2.9 | 4.8 | 8.2 | 10.8 | 14.4 |
|-------------------|---|-----|-----|-----|------|------|
| Temperature in °C | 0 | 120 | 200 | 340 | 450  | 602  |

- (i) Plot a graph of current in mA against temperature in °C. [3]
- (ii) From the graph, find;
  - the current value for a temperature of 300°C. [1]
  - the temperature which corresponds to a current of 12mA. [1]
- (iii) A thermocouple is more sensitive than a liquid-in-glass thermometer. Explain what this statement means. [2]

[Total: 10 marks]

10 (a) Define a semi conductor.

[2]

[3]

**(b)** Explain the difference between an 'npn' transistor and a 'pnp' transistor.

[2]

(c) With the aid of a labelled diagram, briefly describe how a transistor can be used as a switch.

[6]

[Total: 10 marks]

Turn over

Figure 11.1 below shows a d.c motor. The arrow shows the direction of rotation of the coil.



Figure 11.1

- [2] Name the parts labelled P and Q. (a) Which one, R or T, is the positive terminal of the battery? [1] (b) [3] Describe how an electric motor works. (c) State two ways in which the coil in the electric motor can be made to (d) [2] rotate slower. State two changes which can be made to the construction of the (e) [2] d.c motor in order to make it run as an a.c generator. [Total: 10 marks]
- Figure 12.1 represents air molecules in the sound wave at one instant. 12



# Figure 12.1

- State one difference between the motion of a molecule A and the (a) [1] motion of molecule B.
- Describe an experiment that shows that a medium is needed to transmit (b) sound waves. Draw a labelled diagram of the apparatus. [4]
- A short pulse of sound waves produces an echo from a wall 20m away. (c) The echo arrives back at the source of the sound 0.12s after the pulse was produced.
  - [2] Calculate the speed of sound. (i) [3]
  - Calculate the frequency of the sound. (ii)

[Total: 10 marks]