
Teacher’s Guide

to the

High School Computer Science Syllabus

REPUBLIC OF CAMEROON
PEACE – WORK – FATHERLAND

MINISTRY OF SECONDARY EDUCATION

INSPECTORATE GENERAL OF EDUCATION

INSPECTORATE OF PEDAGOGY IN CHARGE OF

THE TEACHING OF COMPUTER SCIENCE

WORKING DRAFT August 2020

TABLE OF CONTENT

1 INTRODUCTION ... 3

2 ORGANIZATION OF THE SYLLABUS ... 3

2.1 COURSE DESCRIPTION AND DURATION .. 3

2.2 PREREQUISITE FOR LEARNING HIGH SCHOOL COMPUTER SCIENCE .. 4

2.3 MODULES .. 4

2.4 MODULE PRESENTATION STRUCTURE ... 6

3 OBJECTIVES ENVISAGED BY THE SYLLABUS .. 7

3.1 HIGH SCHOOL LEAVER PROFILE IN COMPUTER SCIENCE .. 7

3.2 THE AIM OF TEACHING COMPUTER SCIENCE IN HIGH SCHOOL ... 7

4 METHODOLOGY ... 8

4.1 METHODS OF TEACHING COMPUTER SCIENCE ... 8

4.1.1 PROBLEM BASED LEARNING ... 8

4.1.2 PROJECT BASED LEARNING ... 8

4.1.3 EXPOSITORY... 9

4.1.4 DEMONSTRATIVE .. 9

4.1.5 INTERROGATIVE .. 9

4.1.6 DISCOVERY... 9

4.2 PHASES IN LESSON DELIVERY ... 10

4.2.1 THE PLANING PHASE ... 10

4.2.2 THE EXECUTION PHASE ... 10

4.2.3 THE FOLLOW UP AND EVALUATION PHASE ... 10

4.3 LESSON PREPARATION ... 11

4.3.1 TOOLS FOR PREPARATION OR TEACHING .. 11

5 ACTORS AND THEIR ROLES .. 12

5.1 THE TEACHER’S ROLE .. 12

5.2 THE LEARNER’S ROLE .. 12

6 ASSESSMENT .. 13

6.1 THE FORMATIVE ASSESSMENT .. 13

6.2 THE SUMMATIVE ASSESSMENT ... 13

6.3 THE SCHOOL–BASED ASSESSMENT .. 13

6.4 GRADING POLICY .. 14

NOTA BENE .. Error! Bookmark not defined.

1 INTRODUCTION

The High School Teaching Syllabus on Computer Science is designed to equip

learners with necessary skills and experience to apply algorithmic and computational

thinking practices to solve problems using computer systems. With a unique focus on

creative problem-solving techniques, and representation and ethical use of computers,

the course offers to learners a broad range of competencies, individual skills and

motivation, which are essential for a successful working life.

This Advanced Level Computer Science syllabus is expected to provide a

learner with the opportunity to obtain Cameroon national qualifications in Computer

Science and pursue university studies or employment.

Learners acquire knowledge and understanding of the academic aspects of

Computer Science through theory lessons, laboratory practices and collaborative

assignments. The entire syllabus has been designed following the Competence-Based

Approach recommended by the Ministry of Secondary Education with specifications

from the Inspectorate General of Education and guided by the Inspectorate of Pedagogy

in charge of the teaching of Computer Science. This is a task-oriented methodology to

give the learners ample user-time practices with the computer to help them bring out

feasible solutions to real life situations or problems. Many hands-on tasks have been

suggested to enable the learner to practice in a computer laboratory. It is hoped that

teachers will follow these suggestions and lead their learners to explore and discover

more in a computing environment.

2 ORGANIZATION OF THE SYLLABUS
2.1 COURSE DESCRIPTION AND DURATION

This Computer Science (CS) teaching syllabus for High Schools is a two-year

rigorous, University entry-level preparatory curriculum that builds Advanced Level

learners with broad foundations in the field of Computer Science. It covers a wide range

of fundamental topics including Data Structures and Algorithm Design, Programming,

Information Systems, Computer Organization and Networks, Digital Privacy and

Security, and the Societal impacts of computing.

The total learning time for all the modules on this High School Computer

Science teaching syllabus is 426 periods, with 224 periods for the Lower Sixth (First

Year) course work and 192 periods for the Upper Sixth (Second Year) course work. A

period here refers to the teaching time scheduled on the school timetable and it ranges

from 50 to 60 minutes. The way that this time is spent will reflect the subject matter of

each module. In this regard, the average total teaching time is eight periods per school-

week, with six periods for theory and two periods for practical work. Also, the judicious

Commented [1]: Good to have a roadmap here, to tell us what
to expect from each section of the document! For example, though
needed, the section “Teaching Method” was a surprise, especially as
syllabuses are more about body-of-knowledge than teaching!

use of internet and laboratory facilities and overhead projectors would greatly enhance

the quality and effectiveness of teaching periods.

The following Table summarizes the teaching load of High School Computer Science:

 CLASS

WEEKLY
TEACHING
LOAD
(PERIODS)

WEEKLY
PRACTICAL
LOAD
(PERIODS)

ANNUAL
TEACHING
LOAD
(PERIODS)

COEFFI-
CIENTS

LOWER SIXTH
(First Year)

04 04 224 05

UPPER SIXTH
(Second Year)

04 04 192 05

2.2 PREREQUISITE FOR LEARNING HIGH SCHOOL COMPUTER SCIENCE

o Learners willing to study this high school Computer Science course require no

specific or formal qualification in Computer Science but must have Ordinary

Level Mathematics and should have an understanding of civic education and a

disposition for skills acquisition and responsible social behaviour. Basic

computer literacy skills are an advantage.

o Learners should have a mastery of English Language at least the Ordinary Level

and demonstrate a working knowledge of it.

2.3 MODULES

This High School Computer Science syllabus is divided into 11 modules

including a guideline for a mini project suggested for each of the modules. These mini

projects enable the learner to carry out hands on activities to implement concepts of the

modules. The modules are structured as follows:

CLASS MODULES DURATION

LOWER SIXTH

(First Year)

Module 1: COMPUTER APPLICATIONS AND

SOCIO-ECONOMIC IMPLICATIONS

18

Module II: SOFTWARE 50

Module III: INFORMATION SYSTEMS 7

Module IV: DATA STRUCTURES AND

ALGORITHMS

34

Module V: PROGRAMMING 40

Module VI: SOFTWARE DEVELOPMENT I 10

Module VII: COMPUTER SCIENCE PROJECT 18

UPPER SIXTH

(Second Year)

Module VIII: COMPUTER ORGANIZATION AND

ARCHITECTURE

29

Module IX: COMPUTER NETWORKS, DATA

COMMUNICATIONS AND SECURITY

50

Module X: DATABASE SYSTEMS 28

Module XI: SOFTWARE DEVELOPMENT II 50

A successful navigation through the 11 modules by the teacher adequately

prepares the learner to demonstrate competencies in solving most real-life situations

using knowledge and skills gained from Computer Science. Thus, the first six (06)

modules are taught in Lower Sixth (First Year) and the last four (04) in Upper Sixth

(Second Year) while the Module on Computer Science Project is shared as it is

dependent on the other modules.

In effect, the First Year modules provide some background on which the

Computer Science Project module could depend on. The Computer Science Project module

is biased towards developing Project development and realisation capabilities in the

learner, while reinforcing the understanding and application of other module

requirements. As such, project skills developed could be applied in subject domains taught

in later modules, and the learner should be able to discover and exploit knowledge, skills,

competencies and experiences beyond the project course and even the Computer Science

discipline.

2.4 MODULE PRESENTATION STRUCTURE

Each module is presented as a table having three main columns with nine sub-headings

among them. This structure is intended to give teachers an orientation on how to exploit

the module entries and subsequently prepare lessons. The terminology used for the

column headings is contextual and non-standard and so the following definitions and

clarifications are significant.

 I. CONTEXTUAL FRAMEWORK: This gives a global picture of the life situations

from which lesson inspirations are drawn. This column is further broken down into two

sub-headings:

• Family of Real-life situations: This term is an umbrella statement that
groups related real life situations.

• Examples of Real-life situations: This column situates the lesson by
bringing examples from life situations. This can be an activity within a task. It is
expected that the teacher can use the types of examples listed to coin a life
situation for a given lesson.

II. COMPETENCIES: Competencies refer to the ability to do something successfully

and efficiently. It is understood here to be a process(es) evident in an action(s). This

main column has two sub-headings:

• Categories of Actions: These categories group examples of related activities
that learners are expected to carry out in the course of the lesson, as facilitated by
the teacher. This may serve as topics or sub topics from where lessons are
derived.

• Examples of Actions: These refer to the actions or activities the learners are
expected to do successfully and efficiently during a lesson, with or without the
teacher. They constitute indicators that certain specific abilities have been built
into the learner in the course of the lesson. These examples of actions may also
serve as lessons.

III. RESOURCES: Resources refer to the cognitive and material requirements that

ensure a successful lesson. This column has five sub-headings:

• Core knowledge: These are expressions and concepts that learners should be
able to define and comprehend in an effective lesson.

• Skills: These are indicators of competencies/skills that the learner should
demonstrate in class/team during a lesson, or out of class as the context may
demand.

• Attitudes: These are the behavioural responses the learner develops and
demonstrates competence in during and after the lesson. It is inherent in the
learner so that the learner attains performance requisite levels in the learning
process.

• Other Resources: These are material resources to be used by the teacher or
learner and are required to facilitate the teaching/learning process. They are
mostly standard teaching aids black-/white- board, overhead projectors and
computers.

• Duration: This is the expected duration, typically divided into periods, in which
the associated material should be formally taught or learned.

3 OBJECTIVES ENVISAGED BY THE SYLLABUS
3.1 HIGH SCHOOL LEAVER PROFILE IN COMPUTER SCIENCE

Mindful that society is fast developing with rapid changes in knowledge, it is

pivotal to study the fundamentals of how such knowledge is produced, acquired, used

and propagated in this information age.

At the completion of this high school Computer Science syllabus, learners

will have developed skills that let them build and exploit computer systems that address

problems in their community. Specifically, inter alia, the learners use the knowledge and

skills acquired to:

• Develop computer software;

• Design databases;

• Setup and configure data communication networks;

• Carry out a project successfully;

• Propose IT solutions to tackle real life issues;

• Develop websites;

• Assure the quality of developed software;

• Analyse computer systems and architectures.

3.2 THE AIM OF TEACHING COMPUTER SCIENCE IN HIGH SCHOOLS

This High School Computer Science teaching syllabus is intended to build in

the learners:

• an understanding and proper use of basic but fundamental concepts in Computer
Science;

• positive attitudes towards contemporary developments and evolution of
computer systems;

• problem solving skills underpinned by algorithmic and computational thinking;

• confidence to analyse and apply theory and practice in real world situations; and

• foundation for higher studies or training.

4 METHODOLOGY
4.1 METHODS OF TEACHING COMPUTER SCIENCE

A teaching method describes the means used by the teacher to facilitate

learning and to attain set pedagogic objectives. The fundamental teaching approach

adopted in this syllabus is the Competency Based Approach (CBA) which, helpfully,

allows the teacher to include diverse teaching and learning methods. The variant of CBA

used here favors learner centered teaching and learning, with entries and/or exits

through real life situations.

The following subsections discuss some of the pedagogic methods most

adopted to teach Computer Science, and could be exploited within CBA.

 4.1.1 PROBLEM BASED LEARNING
The Problem Based Learning is one where, given a problem, the learners

play the role of active problem solvers while the teacher assumes the role of a facilitator.

The learners are presented with a real-life situation which could be an ill

structured problem, they study the problem or research on it, organize their ideas,

discuss their relative knowledge concerning the problem, and attempt to define its

scope. In the course of their discussions, the learners ask questions concerning aspects

of the problem which they do not understand. The learners are continually encouraged

by the teacher to bring forth what they know and what they do not know. Problem-

solving reckons with individual and group interactions, classification of problem-types

and acquisition of their resource needs, and the integration of possibly researched

solutions.

 4.1.2 PROJECT BASED LEARNING

The High School Computer Science teaching syllabus exploits project-based

learning to strongly engage learners through practical experience and to challenge them

to solving real life situations. The strategy helps learners to improve their retention of

learned experiences and to develop stronger problem solving, critical thinking, and

communication skills.

In the second year of high school, each learner presents a report of a

project(s) undertaken. The learners are expected to go through the project lifecycle of

conception, planning, execution, presentation and evaluation within the two years of the

high school course work. Mini projects and laboratory practice may be based on any

parts of the syllabus, but are structured and presented in a way that meets the objectives

of the School-Based Assessment. These mini projects may take 3 to 4 weeks with the

guidance of the teacher and collaboration of peers. In accordance with the guidelines of

the Advanced Level Computer Science and Information and Communication

Technology examinations as specified by the General Certificate of Education Board,

projects and practical work are part of the student's normal schooling activities, and so

these durations are effectively turn-around time.

Furthermore, the Inspectorate of Pedagogy in charge of the teaching of

Computer Science in the Ministry of Secondary Education runs capacity building

workshops for teachers on the implementation of this teaching syllabus, including

specific components such as project-based learning and the production of remedial

lessons.

 4.1.3 EXPOSITORY
In this method, the teacher presents the contents of a structured lesson to

the learners in the form of an exposé. In the context of CBA, this method is only

recommended when the teacher is presenting external resources necessary for the

acquisition of a competence, such as when explaining or defining a new concept.

 4.1.4 DEMONSTRATIVE
In the demonstrative method, the teacher leads learners to do (demonstrate,

experiment or formulate) something by demonstrating it, and then he/she guides the

learner to do same, while evaluating the degree of learner comprehension.

 4.1.5 INTERROGATIVE
In this method, the learner is assumed to have some knowledge on what is

to be acquired, or an idea of its contents. Through appropriate questioning by the

teacher, the learner constructs his own knowledge based on his/her own understanding

of the situation and his/her attempts to link ideas and make some sense out of them.

This method is often used when the teacher seeks to determine the level of knowledge in

learners.

 4.1.6 DISCOVERY
With the discovery method, the teacher creates a pedagogic scenario and

uses appropriate materials to allow the learners use trial and error methods for learning.

The teacher makes use of his personal experience or those of the learners to solve a

given problem, using the means available. Intra-cognitive and collaborative work here

are highly utilised. This method must be used with care given that it is expensive and

time consuming.

 4.2 PHASES IN LESSON DELIVERY

All teaching and learning activities are done in three essential phases:

planning, execution and follow-up/evaluation.

 4.2.1 THE PLANING PHASE
The planning phase consists of putting in place preparatory materials for

teaching and learning activities, acquiring didactic resources, and identifying how

evaluation would be done. The planning phase provides foresight into how the lesson

would look like. Planning also helps him/her to save time and energy, avoid redundant

work, and enhance the presentation quality of the lesson. During the planning phase, all

the actions of the teaching and learning processes are previewed to ensure that they

develop competencies in the learner. To achieve this, we focus on three elements:

• Essential components of the CBA: knowledge, skill and attitude;

• Integration activities; and

• Evaluation (which is usually formative).

 4.2.2 THE EXECUTION PHASE
This is the lesson delivery phase. During a lesson presentation, the teacher

may apply one or more of the methods stated above, that help realize the purpose of

his/her lesson. The teacher may allow individual or group learning. A group situation

could be one in which group members communicate, organize themselves and learn

from each other. Whether the teacher allows individual or group learning, the essence

should always be to solve a real-life problem in a disciplined manner.

 4.2.3 THE FOLLOW UP AND EVALUATION PHASE
This is the phase during which the teacher carries out an analysis of his

teaching practice or activities in order to continuously improve. Keeping a diary of

remarks and suggestions from each teaching session, can be a useful practice that helps

the teacher to correct him- or herself. This practice also helps the teacher develop

creative ideas that enable him to reach out effectively to all categories of learners.

Also, the teacher evaluates the learner, usually through a formative

evaluation. We can evaluate a competence by proposing to the learners a problem new

to them, which problem need not reveal the resources needed to solve it. Alternatively,

the learner may actually acquire and use the resources need. In any case, errors

committed by the learner during the teaching and learning process should be used

constructively, not negatively, to get to the teaching and learning right.

4.3 LESSON PREPARATION

A prepared lesson is what should be used by a teacher to facilitate learning.

Hence, a good lesson delivery follows from a good lesson preparation.

To select and teach a lesson from the syllabus, a teacher could follow the steps outline

below:

• Express and explore a Family of Life Situation (problem);

• Pick out an Example of Life Situation. This may guide the teacher to develop

a real-life situation. A number of them could be grouped to form a Category of

Actions. (Teachers may use a category of actions as a Topic.);

• Under each Category of Actions, select an Example of Action. (Teachers

may use an Example of Action as a Lesson.);

• An Example of Action could be selected in any order but it is advisable to start

with the first and move chronologically to the last in that group of actions

provided in the teaching syllabus. Be aware that the list of examples is

representative, not exhaustive, and available resources may dictate how best to

present and develop the teaching and learning;

• Put in place the necessary didactic material;

• Produce your lesson plan, gauging the lesson within the specified duration;

• Guide the learner into carrying out the actions stated in the Example of Action. A

successful completion of each action is a mastery or an achievement of a skill;

• Select the Examples of Actions identified with a project and carry it out using any

of the teaching methods given earlier.

In the course of teaching, you can start your lesson through a real-life

situation or leave through a real-life situation.

 4.3.1 TOOLS FOR LESSON PREPARATION OR TEACHING
The required materials to teach this course are the following:

o Availability of one or more computer laboratories. We recommend a ratio of 2

pupils per computer;

o Availability and possession of up-to-date and authoritative Computer Science

textbooks and laboratory manuals;

o Essential classroom and laboratory supplies;

o Availability of relevant software specified as didactic materials;

o Relevant hardware accessories and platforms. In particular, overhead

projectors and demo machines should be standard to every Computer Science

course;

o Internet connection for documentation, research and teaching;

o Links to online resources within the content’s learning environment;

o Schemes of work and lesson notes;

o Students should master and be able to work on MS Windows-based and Unix

(Linux)-based machines, even if they are proficient in just one of them;

o C or Pascal language should be used for programming or any other

language(s) that revised versions of the syllabuses may introduce;

o Latest popular and stable versions of HTML, CSS, Java and PHP should be

used for web authoring and database programming.

5 ACTORS AND THEIR ROLES

 5.1 THE TEACHER’S ROLE

The role of the teacher is to create the learning requirements, situations and

environments that favor the development of the competency in view. These activities

take into consideration the individual characteristics of the learner such as fast learner,

slow learner, physically challenged, impaired, etc. The teacher should prepare lessons

following the recommendations in the CBA concept.

The teacher follows up learner activities, provides guidance and corrects

work-in-progress. The teacher is also required to end every lesson or a group of lessons

with assignments that consist of tasks or mini-projects that provide the opportunity for

learners to develop their skills in problem solving. Requirements for mini-projects may

span modules, and so their correct teaching order and methods must be ascertained.

The teacher is expected to obtain and use appropriate material from sources

which will facilitate the development of the desired competency in the learner. The use

of projectors and multimedia platforms in the display of information is strongly

recommended. These materials help secure learner attention as well as facilitate

teaching.

 5.2 THE LEARNER’S ROLE

Learners are introduced problems from real life whose solutions require

that they exhibit creative, innovative and entrepreneurial abilities. With the teacher’s

guidance, the learner acquires the necessary ingredients needed to exercise the expected

competency. The learner spends time carrying out research on projects given out by the

teacher.

6 ASSESSMENT

The primary purpose of assessment and evaluation is to improve learning.

Information gathered through assessment helps teachers to determine the learners’

strengths and weaknesses in the achievement of the curriculum expectations in each

module. This teaching syllabus uses three types of assessments: Formative, Summative

and School-Based Assessments.

 6.1 THE FORMATIVE ASSESSMENT
Formative assessment is to check for understanding after teaching each sub-

topic, topic or module. It usually takes the form of assignments, quizzes, multiple

choices questions, fill-in-the-blanks, or simple structural questions.

 6.2 THE SUMMATIVE ASSESSMENT
This is a summative examination at the end of a sequence, a term, a year or

at the end of a course to find out if the objectives set in them are attained. These

examinations could take the form of multiple-choice questions, structural questions,

case study questions and practical examinations. They are used to assess students’

ability to apply the concepts covered in the course.

6.3 THE SCHOOL–BASED ASSESSMENT
School-Based Assessments (SBAs) are mini-projects carried out by learners

under the guidance of the teacher within or after each module. Guidelines for mini

projects are outlined for each module. Teachers should follow these guidelines to

prepare tasks for their learners. Each mini-project report is evaluated by the teacher

using the project evaluation template provided by this guide. These mini-projects are

assessed based on submitted formal project reports typically in the form of a

presentation or demonstration. The submission provides the teacher with an

opportunity to appreciate the student’s knowledge and understanding of the subject

matter. An Inter alia, the assessment may consider the oral and written communication

skills of the learner, as well as his/her ability to think critically and to reflect on the

material learned.

As part of assessments, teachers are required to provide learners with

descriptive feedback that guides their efforts towards improvement. Classroom teachers

are advised to focus on setting practical tests that relate to scientific and daily life -

situations in order to test learners’ reasoning and technical skills.

Learners are required to carry out a final project. At the end of some

modules, are mini projects to be done by the learners under the guidance of their

teacher. However, at the end of all the modules, the learner should be able to carry out a

final project which will help to materialize the module on project management

The section of the syllabus also suggests framework and assessment grids

for the final projects.

6.4 GRADING POLICY

Bearing in mind that the subject Computer Science is intended to give

students opportunities to use computers and gain experience in solving problems,

teachers will be well aware that written examinations need not be the most suitable

means of assessment. As such, written, summative and similar examinations should be

naturally easier for learners better-exposed to real-life, practical and laboratory

experiences. In addition, it is recommended that continuous assessment be used and

letter grades, not just marks, be awarded.

As such, the seven-point scale (A through F plus U) that follows provides a

record of the learning skills demonstrated by the learner in every module of the course

through independent work, teamwork, organisation, work habits, and individual or

group initiative.

Remark
Honour

Roll
Excellent Good Satisfactory

Needs

improvement
Failed Ungraded

% Score 90 to 100 80 to 89 70 to 79 60 to 69 50 to 59 40 to 49

< 40

Grade A B C D E F U

7 SYLLABUS OUTLINES

 7.1 TABLE OF MAIN COMPONENTS OF MODULE 1: COMPUTER APPLICATION

AND SOCIO-ECONOMIC IMPLICATIONS

Module 1: COMPUTER APPLICATIONS AND THE SOCIO-ECONOMIC IMPLICATIONS

 OF THE USE OF COMPUTERS

Class: Lower Sixth Theory: Practical: Duration of Period:

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Description of Computer

system

Describe types of
computers;
Identify input & output
devices;
Describe how a
computer system
functions;

 Manipulate input and

output devices.

Input devices;
Processing devices;
Output devices;
Storage devices;

Peripheral devices

Compare characteristics:
size, processing
capabilities, price. of
computers;
Connect correctly input,
processing and output
devices;
Power a computer (soft
and warm booting);
Transfer data/information
to peripheral devices;
transfer data/information
from Peripheral devices;
Enter information into
computer system;
Print a document

 Learners should be

taught how to effectively

connect a computer

system and the

computing devices should

be taught equally to them

Utilization of General

purpose and other

computing applications

• Identify domains of

use of general

purpose and other

computing

applications.

• Exploit productivity

tools (e.g., word

processor;
Desktop publisher)

• Monitoring and
control system;

• Simulation and
modelling systems;

• Batch and online
processing systems.

• Determine use of
general purpose
applications in
commerce, industry,
science, education,
arts and media
(essay);

• Accomplish tasks via
productivity tools
(spreadsheets, word
processors,
database,
presentation
software).

• Learners should visit

appropriate sites:

Shops Pharmacies,

Banks/IT firms,

Insurance

Companies, …)

Specific objectives: On completion of this module, students should have the opportunity to:

a) Describe ways in which computing enables innovation.

b) Explain some areas or domain that the computer could be used to facilitate work.

c) List examples of input and output devices.

d) State clearly the various stages of information processing cycle and give examples.

e) Know the various software that can be used in data processing to accomplish tasks. Discuss the ways in which

innovations enabled by computing affect communication and problem solving.

f) Analyze how social and economic values influence the design and development of computing innovations.

g) Discuss issues of equity, access and power in the context of computing resources.

h) Communicate the legal and ethical concerns raised by computational innovations.

i) Discuss privacy and security concerns related to computational innovations.

j) Explain positive and negative effects of technological innovation on human culture.

7.2 TABLE OF MAIN COMPONENTS OF MODULE 2: SOFTWARE

Module 2: SOFTWARE

Class: Lower Sixth Theory: Practical:
Duration of Period : 50

minutes

Specific objectives: On completion of this module, students should have the opportunity to:

a) Demonstrate an understanding of software Requirements.

b) Differentiate between application and system software.

c) Know the different types of operating systems.

d) Understand the structure, functions, and philosophy of operating systems.

e) Understand scheduling, dispatch and deadlocks simulation computing.

Category of

actions

Examples of actions Core knowledge Skills Explanatory Notes

Management of

processes in a

computer.

Explain the role of OS in

process management

Explain concepts in process

management

Describe scheduling

strategies used by the OS to

manage processes.

Process

Sharing of processor:

Multi-tasking

Multi-programming

Process creation

and termination

Concurrent

processes;

Race condition;

Mutual exclusion;

Deadlock;

Deadlock detection

and resolution

strategies

Context switching.

Scheduling

strategies:

Notion of burst time

pre-emptive

notion of quantum

time,

Round Robin

Priority

Shortest Remaining

Time Next.

non pre-emptive

First Come First

Served,

Shortest Job First,

Gantt chart

representation of

process scheduling.

• Describe how the file directory is

organised (single level, two level,

tree structure directories)

• Determine ratings of file access

methods

• Outline file attributes

• Outline OS operations on a file

• Differentiate Sequential Access

and direct access

Compare file systems.

The learners are
supposed to know just
the concepts

Management
of file by OS

• Describe how file are

organised and stored in

the computer

• Determine ratings of file

Emphasis should be
made on the
comparison of the

access methods

• Create and managing files

in the computer

Explain file system (eg
FAT16, FAT32, NTFS, ext
in unix environment).

various file systems.
That is FAT16, FAT32,
NTFS
Also for the GUI
environment, the
interface or window
should be mentioned
to the learner.

7.3 TABLE OF MAIN COMPONENTS OF MODULE 3: COMPUTER NETWORK,

DATA COMMUNICATIONS AND SECURITY

Module 3: COMPUTER NETWORKS, DATA COMMUNICATIONS AND SECURITY

Class: Lower Sixth Theory: Practical: Duration of Period: 50 minutes

Specific objectives: On completion of this module, students should have the opportunity to:

a) Appreciate the need for data communication networks.

b) Identify the different equipment and components used.

c) Know all transmission modes, and media.

d) Describe the various network communications standards

e) Recognize the need for communication Protocols.

f) Understand modulation and multiplexing.

g) Explain the concepts of computer Networks and Topology.

h) Understand network implementation and security.

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Exploration of computer

network platform

• recall types of network

(LAN, MAN, WAN)

• Describe types of

network connections

(point to point,

multipoint, …)

• Explain features of

network operating

systems (multitasking,

multi-user)

• Describe network

architectures.

• Types of network

(LAN, MAN, WAN);

• Components of a

network;

• Network topology;

• Network operating

system;

Network architecture.

• Choose appropriate

type of network for a

given context;

• outline network

software;

• Compare, network

topologies based on

characteristics like:

robustness, scalability

…

• Select suitable

physical and logical

topologies;

Better ways or best route

of connecting network

should be examined.

Compare physical

topology apart from

logical topology

Commented [elyse ple2]: replace that is with :

Commented [elyse ple3]: compare physical topology with
logical....

Differentiate types of

network architectures.

Setting up a computer

network

• Explain how network

devices function

(MODEM, repeaters,

switches, bridges,

routers, and gateways

…);

• Describe transmission

mediums (cables and

wireless);

• Configure the

operating system for

network;

Explain how mobile

communication

technology work.

• Network devices;

• Transmission

mediums;

• network configuration;

• Mobile technology;

Network

troubleshooting.

• Select and connect the

hardware components

of a network; cables,

switch, router, modem;

• Compare transmission

mediums based on

characteristics (data

rate, transmission

distance, ease of

installation …);

• Explain the difference

between wired and

wireless transmission;

• Outline errors that may

occur in a network;

• Set up a network;

• Configure an operating

system for networking;

Troubleshoot a

network.

You should have an

open mind when

teaching this section as

technology evolved

frequently.

Explanation should be

given how equipment

function individually as

well as collectively

Also insist on the

specification of

addresses, as well as

some errors that may

occurred.

Data security, privacy

and integrity

• Explain data security;

• Describe safety

principles in protecting

data and network from

malware;

• Use antivirus to

protect computer

network from virus,

Trojan horse, worm ;

• describe different

types of error

detecting code (parity

bits, hamming codes,

cyclic redundancy

checks/check sum);

• Explain measures

used to protect

computers and

networks from

intruders and natural

disaster (username

and password,

firewall, data

encryption, backup,

…);

Recognize ownership

of digital information

and guard against

digital theft and

plagiarism.

• data security, privacy

and integrity;

• Protect network,

computer and data

from viruses, spyware

unauthorized access

...

• Data backup;

• Firewall;

• Data encryption;

• Malware;

Plagiarism.

• Explain concepts

related to data security

(privacy, integrity, …);

• Explain how backup

ensures data security;

• Explain in a report

technique used to fight

plagiarism;

• Apply safety principles

in protecting data and

network from malware

(scan every incoming

document/program

before opening or

running, …);

• Scan a computer

system using an

antivirus;

• Set up a firewall and

web filtering using an

antivirus;

• Save data on cloud

storage systems

(Google drive, …).

The importance of

plagiarism should be

mentioned to the learner.

Practical lessons should

be conducted at this

level to illustrate security

measures to learners.

Networking standards

and protocols.

• Describe different

network standards,

and protocols;

Explain the OSI

• Standards and

protocols;

• The OSI reference

model;

• Produce a report

comparing the OSI

and TCP reference

models;

The OSI model should

be well elaborated

Ask learners to produce

a report here to show the

reference model. Internet protocols. Discuss internet

protocols (TCP, UDP,

IP, FTP …) (essay).

other aspects of the

various protocols used in

the OSI model

Using the Internet

• Describe the history of

the internet;

• Explain the concepts

intranet, extranet and

Internet;

• Describe services

available on the

Internet (e-commerce,

e-learning, e-banking

…);

• Exchange information

using email;

• Use search engines;

• Doing business online;

• Change privacy

settings.

• history of the Internet;

• Notions of: Internet

Intranet and extranet;

• Internet services;

• Safety and security

risks in participating

online;

• Explain in a report

major events in the

history of the internet;

• Select suitable

hardware and

software needed for

access to internet

connectivity;

• Access a website

using a browser;

• Select appropriate

internet service for a

given context;

• Manage bookmarks

using a browser;

• Send and receive e-

mail;

• Apply for a job online;

• Apply for scholarship;

• ensure privacy;

• Search information on

the internet using a

search engine;

• assess online

information for

relevance, bias,

validity, reliability and

sufficiency;

Download from the

internet (images, files,

software, and drivers).

Emphasis should be

made known to the

learners that everything

that is done or work

carried out online is

businesses

7.4 TABLE OF MAIN COMPONENTS OF MODULE 4: DATA STRUCTURES AND

ALGORITHMS

MODULE 4: DATA STRUCTURES AND ALGORITHMS

Specific objectives: On completion of this module, students should have the opportunity to:

a) Demonstrate how data is efficiently organized in a computer

b) Practice and expand their ability to analyze and solve problems using a computer.

c) Analyse more complex problems and the development of solutions using Algorithmic tools.

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Simple data types

Distinguish the various

data types.

• Character;

• Integer;

• Real or float;

• Boolean;

Representation of each

data type in a

programming language.

• Outline examples of a

given data type;

• Calculate memory

allocated to each data

type;

Declare variables using a

programming language

syntax.

Specify the types of data

type.

Overview of Algorithms

• Describe forms of

algorithms;

• Describe

characteristics of a

good algorithm;

Write steps to solve a

problem.

• Algorithm;

• Forms of algorithm

(pseudocode,

flowchart);

• Characteristics of a

good algorithm.

• Model the solution to a

complex problem in a

series of precise and

finite set of steps;

Distinguish good and

poor algorithms with

respect to the spelled-

out characteristics.

State good

characteristics for a

good algorithm which is

already in examples of

actions

Algorithmic Design

strategies

• Break down a complex

problem into simpler

solvable forms;

Build solution for a

problem using the

different modules of

the problem.

Design strategies:

• Top-down design;

• Bottom-up design;

• Step-wise design;

Modular design.

• Choose a design

strategy to solve a

problem;

• Split complex problems

into simpler problems

until they are easily

solvable;

• solve the simple

problems and combine

solutions to build the

complex solution;

• Split a problem into

different modules

which can run

independently;

Create an interface to

coordinate the different

modules.

Each design strategy

should be well explained

7.5 TABLE OF MAIN COMPONENTS OF MODULE 5: PROGRAMMING

MODULE 5: PROGRAMMING

Class: Theory: Practical: Period:

Specific objectives: On completion of this module, students should have the opportunity to:

1. Demonstrate the ability to use different data types in computer programs;

2. Demonstrate the ability to use control structures and simple algorithms in computer

programs;

3. Describe fundamental programming concepts and constructs;

4. Plan and write simple programs using fundamental programming concepts;

5. Apply basic code maintenance techniques and conventions when writing programs.

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Classification of

programming

languages.

• Present programming

as a tool to solve

problems using the

computer;

• Describe types of

programming

languages (low level

and high level

language);

• Explain the

advantages and

disadvantages of

using various

categories of

programming

languages;

• Identify areas of

application of various

programming

languages;

Explain why some

programming

languages are

preferred to others.

• Programming;

Program..

• Justify in writing the

choice of a

programming

language for a given

context;

• Differentiate between

Program and

algorithm;

• Classify a given

programming

language;

Differentiate machine

code and human

understandable code.

Programming

generations (G1, G2,

G3, …) should be

explained for the types

of programming

language

Syntax and semantics.

• Identify the main

elements of a

program and give

examples;

• Practice how to

declare and use

various program

elements in a code;

• Explain various

program structure;

• Explain the

importance of

documentation in

• syntax ;

• semantics;

• Elements of a program

o Identifier,

o Variable/identifiers,

o Constant,

o Reserved word,

o Character sets,

o Simple data types;

• Scope of variables in a

program: local and global;

programming language;

• Describe the main

elements of a

program;

• Outline examples of

main elements of a

program;

• Declare and use

various program

elements in a code;

• Document a

programming process;

• Write global and local

Apply the concepts to a

programming language.

For example, in C-

programming

programming;

Explain the role of

subroutine in a

program.

variables in a given

programing language;

• Declare a variable in a

chosen programming

language;

Write a subroutines.

Program structure

• State elements of

standard program

structure (Program

header or pre-

processor directives,

Variable declaration,

Constant declaration,

Body of the program,

Begin/end notations);

• Assignment notation;

• Improve on the

structure of a

standard program.

• I/O functions e.g. Pascal:

writeln; C: printf, scanf;

Variables, expressions, and

assignment statements.

• Explain the use of I/O

functions;

• Write simple programs

e.g. compute areas,

list of statements ...;

• Store and manipulate

numbers and text in a

program using

variables,

expressions, and

assignment

statements;

• Use I/O functions e.g.

o Pascal: writeln;

C: printf, scanf.

Make emphasis on

some standard codes

like the Fibonacci

sequence

7.6 TABLE OF MAIN COMPONENTS OF MODULE 6: SOFTWARE DEVELOPMENT

MODULE 6: SOFTWARE DEVELOPMENT

Class: Theory: Practical: Period:

Specific objectives: On completion of this module, students should have the opportunity to:

a) Be familiar with the fundamental concepts of software development.

b) Identify software requirements.

c) Appreciate the design processes in software development.

d) Understand verification and validation Process.

e) Apply Software Management.

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Developing Software

requirements

• Explain software

requirement analysis;

Illustrate requirements

of specific software.

• Software requirement

and specification;

• Technical requirements;

User requirement.

• Outline activities in

software requirement

analysis (elicitation,

validation,

specification and

verification);

• Write a requirement

specification

document;

Compare technical and

Software requirement is

not a stage, so the

Nature of software

should be described

clearly when designing

requirement

specifications. The word

Nature is the whole idea

User requirement. behind for what a

software is to do.

Technical requirements

should be emphasis as

the elements needed to

develop software

Design process in

software

• Identify components of

a software to be

designed;

• Explain design

elements;

Specify design

elements.

• Data types and data

structures design;

• Architectural design;

• Interface design;

• test data;

Algorithm design;

• Identify stages in

software design

(interface, architectural

and detailed design);

Produce design

document.

Implementation

strategies were replaced

with specify design

elements. This concept

should be explained well

Verification and

validation Process

• Explain software

verification and

validation;

Explain testing

mechanisms of a

developed software.

• Verification;

• Validation;

• Testing methods:

o Unit testing;

o Integration testing;

o Smoke testing;

o Regression testing ;

Acceptance testing.

• Describe methods to

test a software (code

review, static code

analysis, unit testing,

…);

• Apply testing methods;

Differentiate between

testing methods.

You are not supposed to

talk of data validation

and data verification

concepts as both do not

have common

characteristics but

instead as a stage in the

designing of a software

Learners should be

described the various

testing strateties

practically which are the

methods applied for

testing

Management of software

development process

Explain project

management

activities.

• Outsourcing;

• Management activities:

o Proposal writing,

o Project planning

and scheduling,

o Project monitoring

and reviews,

o Personnel

selection,

Evaluation report writing

and Presentation.

• Produce a report:

o Software

development

stages;

o software

outsourcing;

software management

activities;

Emphasis should be

made on the elaboration

of the path taken to

realise a software

7.7 TABLE OF MAIN COMPONENTS OF MODULE 7: COMPUTER SCIENCE

PROJECT

MODULE 7: COMPUTER SCIENCE PROJECT

Class: Theory: Practical: Period:

Commented [elyse ple4]: this concept should be well
explained

Commented [elyse ple5]: Replace "you" with " the teacher"

Specific objectives: On completion of this module, students should have the opportunity

to:

a) Work in a team to integrate and apply the learning outcomes from the modules to the

later stages of a sustained project.

b) Develop a small computer related business from the point of starting-up to running it.

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Starting a business

• Identify businesses

related to basic

skills

Explain customer

needs

• Business world

• E-commerce

• Study IT success

stories (Nji Collins,

Arthur Zang, Mark

Zuckerberg, Bill

Gates, Steve Jobs,

Jack Mah,)

• Study IT success

stories (Google,

Apple, Amazon)

Detect community needs

that can be solved with

IT.

 Success stories of

prominent IT

personalities should be

presented to learners

like Bill Gates and the

rest. Learners should be

asked to investigate

about the success

stories of this prominent

IT personalities

7.8 TABLE OF MAIN COMPONENTS OF MODULE 8: COMPUTER ORGANISATION

AND ARCHITECTURE

Module 8: COMPUTER ORGANIZATION AND ARCHITECTURE

Class: Lower Sixth Theory: Practical: Duration of Period: 50 minutes

Specific objectives: On completion of this module, students should have the opportunity to:

a) Demonstrate an awareness of the nature of the hardware involved in computer systems.

b) Appreciate the choice of a combination of particular types of peripheral devices, the operating system and

the processor.

c) Understand and analyze computer systems architecture.

d) Explain the structure and functioning of computer instruction set.

e) Describe the organization of different bus systems and their characteristics in a computer system.

f) Understand low-level parallelism and its implementation in a processor.

g) Know basic logic gates.

h) Carry out arithmetic operations with basic digital circuits.

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Polling and Interrupts

Illustrate how devices

interact.

• Polling

• Interrupt

Detection of interrupt

• Difference between

Interrupt and

Polling;

Describe interrupt

detection strategy.

 Learners are supposed

to know the clear

distinction between

polling and interrupt

Binary Arithmetic

• Carry out arithmetic

operations

(Addition,

Subtraction,

division,

multiplication) in

base 2, 8, 10 and

16.

• Convert from one

base to another.

Represent numbers

using sign magnitude,

one’s and two’s

complement.

• Number systems

• Data representation

Sign magnitude, one's

and two’s

complement.

• Distinguish between

the use of kibi and

kilo, mebi and

mega, gibi and giga,

tebi and tera;

• represent binary

numbers in one’s

and two’s

complement ;

• Convert an integer

value from one

number base

representation to

another;

• Perform binary

addition and

subtraction;

Describe practical

applications of

Binary Coded

Decimal (BCD) and

Hexadecimal.

Emphasis should be

made on arithmetic

operations

SI unit used to represent

absolute values should

be highlighted

Logic gates and Boolean

arithmetic

• Explain

combinational and

sequential circuits;

• Identify logic

components;

• Simplify Boolean

expressions.

• Logic gates;

• Boolean expression;

• Boolean Algebra;

• Truth tables;

Logic circuits

• Differentiate

between

combinational

circuits and

sequential circuits.

• Sketch the NOT,

AND, OR, NAND,

Learners should know

that inputs used for

Logic gates ranges from

1, 2 till 3

Teachers should be

able to build AND, OR,

and NOT gates using

• Build logic circuits

Implement other

logic gates using

universal logic gates

(NAND and NOR)

NOR logic gates;

• Construct the truth

tables for AND, OR,

NAND, NOR gates;

• Construct a logic

circuit from a logic

expression or a truth

table;

• Construct a truth

table from a problem

statement, a logic

expression or a logic

circuit;

• Derive a logic

expression table

from a problem

statement, a truth

table or a logic

circuit;

Implement logic

gates using

universal logic gates

(NAND, NOR)

the universal gates like

NAND and NOR gates

Emphasis should be

made on sequential

circuit which amplifies

and combinational

circuit which does not

amplify

7.9 TABLE OF MAIN COMPONENTS OF MODULE 9: INFORMATION SYSTEMS

Module 9: INFORMATION SYSTEMS

Class: Lower Sixth Theory: Practical: Duration of Period: 50 minutes

Specific objectives: On completion of this module, students should have the opportunity to:

a) Demonstrate knowledge and understanding of main aspects of Information Systems.

b) Demonstrate an understanding of the components of an information system and the links between

them.

c) Introducing data flow diagrams and their use in the description of an information system.

d) Understand the need for designing user interfaces, and becoming familiar with design principles.

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Exploring Information

Systems

• Identify the

components of an

Information system

• Describe the roles of

each component in

an IS

• Classify data capture

methods

Identify application

areas for information

systems

• System

• Information system

• Data

• Information

Data capture

• Describe the

components of an

information system

• Describe the different

types of IS

• Explain the purpose

of IS in and

organisation

• Define a problem in

your community for

which an IS can be

developed (Project)

Discuss (essay) the

need for an IS in an

organization.

Exploring information

systems means a detail

analysis of this

important concept.

Learners should carry

out research on

information systems and

put it in writings in a

form of an essay for

presentation in class

The list for information

system is not

exhaustive, so teachers

should talk of other

types.

Setting up an IS in an

institution like a school

should be specific.

Learners could be

asked to put in place an

IS for a school library

only, or for processing

marks. It should just be

an aspect and not a

complete IS for the

whole school. Teachers

should download

“ARCMAP”

7.10 TABLE OF MAIN COMPONENTS OF MODULE 10: DATABASE SYSTEMS

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Understanding

Relational database

management systems

• Explain relational

database concepts;

• Identify links between

related tables;

Use appropriate data

types in relational

tables – text, numeric,

date, Boolean and

memo.

• Relational database;

• Entity, field (attribute),

key field (primary key),

secondary key, record

(tuple), foreign key.

• Describe the

significance of each

relational database

concept;

• Organize data into

related tables;

Select the appropriate

data type for each field.

The concept of

relational database

should be well explained

• Explain relational

database

relationships

RDBMS relationships:

• One-to-one;

• One-many;

• Many-many;

• Determine

various

relationships

between tables

or entities;

• Define and

implement joints;

• Explain constraints

and constraints

enforcement;

• Distinguish between

Referential integrity

and check

constraints;

• Inner joins and Outer

joins;

• Notion of constraints

and constraints

enforcement;

Referential integrity Vs

check constraints.

• Set up joins between

tables in a RDBMS;

• Enforce constraints

using features of your

RDBMS and SQL;

• Work with

modification

anomalies on a

database.

Relational database

concept should be well

illustrated in the

computer laboratory

using SQL.

MODULE 10: DATABASE SYSTEMS

Class: Theory: Practical Duration of Period:

Specific objectives: On completion of this module, students should have the opportunity to:

a) Describe the nature and purpose of database models and how they are used;

b) Describe the functions of the tools readily available in database packages;

c) Appreciate the advantages of relational database systems over traditional file systems;

d) Understand how a relational database is designed, created, used, and maintained;

e) Describe the components of a database management system;

f) Describe the different types of database organizations;

g) Distinguish between shared and distributed databases;

h) Describe some ways databases are used on the Web.

7.11 TABLE OF MAIN COMPONENTS OF MODULE 11: SOFTWARE

DEVELOPMENT II

MODULE 11:

Class: Theory: Practical: Period:

Specific objectives:

On completion of this module, students should have the opportunity to:

a) Use a variety of problem-solving strategies to solve different types of problems

independently and as part of a team;

b) Develop Algorithmic thinking skills, and Design algorithms according to specifications;

c) Design software solutions to meet a variety of challenges;

d) Apply a software development life-cycle model to a software development project.

e) Show understanding of how testing can expose possible errors (syntax

errors, logic errors and run-time errors) and error detection in the development of a system.

Category of actions Examples of actions Core knowledge Skills Explanatory Notes

Problem-solving

strategies

• Solve a given problem

in well-defined steps;

• Demonstrate mastery

in solving a problem by

solving its constituent

parts;

• Explain models used in

solving computing

problems (divide and

conquer, stepwise

refinement,

incremental, …);

• Use models to solve a

problem.

• Algorithm.

• Algorithms Development

Techniques

(Divide and Conquer or

Stepwise refinement,

Incremental,

Parallelism).

• Explain the

concept of

algorithm;

• Enumerate

examples of

problems solved by

divide conquer;

• Write simple

algorithms;

• Describe

approaches to

design algorithms

(top-down and

bottom-up design);

• Resolve a problem

using problem

solving models.

This module is

supposed to be taught

in a way that learners

carry out projects.

Designing software

solutions

• Use a programming

language;

• Use an IDE;

• Expose faults in

programs and ways of

avoiding faults;

Describe features

found in a typical

Integrated

Development

• Features found in a

typical Integrated

Development

Environment (IDE);

• IDE;

• Modify functioning of

existing codes to sort or

search variables in

arrays.

• Transform an algorithm

into a program;.

• Write a program;

• Translate, test, run a

high-level language

using an IDE;

• Identify features of an

IDE;

• Write programming

codes using a given

The use of IDE implies

translate, test and run

Environment (IDE):

(Coding, including

context-sensitive

prompts, initial error

detection, including

dynamic syntax

checks).

compiler ;

• Identify errors in a

program;

• Correct errors in a

program;

• Write codes with

correct syntax.;

Write programs

using arrays.

