
J

REGISTRATION CENTRE NUMBERn CENTRE: NAME:-
A

CANDIDATE’S FULL NAMES

CANDIDATE’S IDENTIFICATION NUMBER SUBJECT CODE
0795

PAPER
NUMBER

3
TIS 4v :• • ; •; ...

j^tv 1 ' v
: v^v'Vv \

. -"-vs • .'V . .. • •

•, v ?
V *

,'* * *! ,< •
, .S ' i ' \

J .
1 fN • It• v/. < .

'C

' j
' •

.t ykh -l . FOLti

.
; . L • V V ' V- v

! i.
V V

• 1
V V \ :" \ > &'» Vj

- 4

/

C ; V r j J i ;

,-f • yr".4 .
• If - '

. .< 4 /v: >;• . JrHy HERI
p?•v*

• (- *,•» j

; . / M P i i• .«*

FOR OFFICIAL USE ONLY
(Candidate Random Code): >

GENERAL CERTIFICATE OF EDUCATION BOARD
General Certificate of Education Examination

ADVANCED LEVEL
PAPER

NUMBER
SUBJECT TITLE

COMPUTER SCIENCE
SUBJECT CODE

0795
3

EXAMINATION DATE: JUNE 2025

Duration: Two Hours
Enter the information required in the shaded boxes above.
Do not write in pencil.
Carry out ALL the tasks given. For your guidance, the approximate mark for each part of a task is indicated in
brackets.

Great importance is attached to the accuracy, layout and labelling of drawings and computer generated outputs.
You are reminded of the necessity for good English and orderly presentation of your answers.
Record all your answers in the spaces provided in this question booklet. Also record in your question booklet any
information requested or that you believe would make it easier to understand how you carried out tasks or answered
questions. Blank pages have been provided at the end of this booklet in case you need additional space for your answers
or rough work.
Make sure all your answers, including printed works, are submitted with your question booklet.
When an imperative programming language is required to write program code, either Standard [ISO] Pascal or the
/ ANSI] Cprogramming language may be used.

If need be, supervisors will assist you in recording details of intermediate work carried out on the computer.

t

FOR EXAMINERS 9 USE ONL Y
SCORE

Marked b\t •

i

Date:Signature:
!

Checked by:

Date:Signature:
Turn Over

00/0795/3
©202SGCEB

.2

SECTION A: DATABASE SYSTEMS
Database design and implementation
An e-commerce company wants to develop a database to manage its data. The database should store information about
customers, orders, products and suppliers.
Customer (CustomerlD, Name, email, Address)
Product (ProductID, Product Name, Price)
Supplier (SupplierlD, SupplierName, Address)
Order (Order Date, Total)

Task 1
1. In your answer booklet, produce an entity relation diagram in 3rd normal form. Underline key fields therein.

(5 marks)

2. Write SQL queries that will enable you to add the column phoneNumber to the table Customer, and
Description to table Product. (2 marks)

3. Use a suitable DBMS of your choice to implement the database design in 1 above; print a copy of your database.
(2 marks)4. Insert sample data into the tables created and print a copy each of product, customer and order; see the tables below.
(3 marks)

Go on to the next page00/0795/3

3

5. Implement SQL queries to perform the following operations, and then copy them into their respective spaces below:
a) Retrieve the names of all customers who have placed an order.

(1 mark)

b) Retrieve the names of all the products that Jane supplied. Use the join operator to obtain your answer.

(2 marks)
(1 mark)

»

c) Print a copy of each query.

d) Retrieve the names of all customers who have ordered a product supplied by Ousman. (3 marks)

te) Print a copy of this query. (1 mark)

CustomerlD Customer Name Email Address
Johnc@gmail.comJohn Che001 Bekora
Jane@gmail.comJane Full Bafang002
Fuh@yahoo.comJane Full003 Bafang

Shutang Ben Shutang@hotmail.coni004 Kejum

Productll) Product Name Supplierll) Price
Caps001 01 2500
Shirts002 01 1500

003 Shoes 02 2000

Turn Over
00/0795/3

4

Supplier!!) Supplier Name Address
Njombc1 Ousman

Sangmclima2 Manka’a
3 Ngimfack Banteng

Sangmclima4 Manka’a

Order!I) CustomcrID . Order Date
l 001 20-03-2025
2 002 25-03-2025 i

(30 marks)
Using your preferred programming language (PL), C or Pascal, and integrated program development environment
(IDE), carry out the following programming tasks. Note that comments within questions start from a double slash (/ /)
to the end-of-line, or are between / * and * /.

SECTION B: PROGRAM DEVELOPMENT

Game of Life Task Description
Conways’ Game of Life (or just “Life”) is a “cellular automaton” which evolves live and dead cells within a grid (or
board) here represented as a 2-D array. Grid cells are either alive or dead and evolve in successive generations as
determined by their neighbours. The neighbours of any given cell are horizontally, vertically or diagonally adjacent to it.
The following rules are applied to the current (or initial) generation of cells in order to obtain the cell values of the next
generation.

1) Any live cell with fewer than two live neighbours dies as if caused by under population.
2) Any live cell with two or three live neighbours lives on to the next generation.
3) Any live cell with more than three live neighbours dies, as if by overpopulation.
4) Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

For example, Figure 1(a) is a 4-by-4 grid for the initial stage (or current generation) of a “Life” cellular automaton and
Figure 1(b) is the next generation obtained by obeying the above rules.

Initial Stage: Next Generation:

I 1 I 0 I1 1 0 0 0 I
0 0 I0 0 0 I1

0 I 1 0 I0 0 I1 1 I)
I1 I 1 I 01 0 I

I

Figure. 1: (a) Initial Stage (b) Next Generation

Task 2:
We develop program fragments to display and evolve successive generations of “Life” from a 2-D array. Arrays
A [Row] [Col] and B [Row] [Col] are used to store the current and next generation of the board’s state. Col and
Row are global variables used to store the size of the arrays and are both initially set to 4. You are to develop executable
code from the algorithms given in each subtask. For each subtask, make sure the coding is correctly done.

Coding Algorithms (17 marks)

00/0795/3 Go on to the next page

5

Subprogram row_line () draws a horizontal line of dashes as follows. It outputs a new line then, for each
column, outputs five dashes (

1)
). It then outputs a second new line. (2 marks)

Implement the [LCG] random number generator (RNG) given in Figure 2. Follow the directives given in it, in
italics. You will Jater call function rand_init (s) in order to initialise the RNG. Similarly, you will later call
function rand_no () repeatedly in order to return successive random numbers.

Define the global constant -.
RAND_SEED = 7 //default random number seed.

Define (he global variable with an initial default value:
Rand_x <- RAND_SEED // default initial value.

2)

(4 marks)

Define functions rand_init (s) and rand_no().
// seed (initialise) the RNG with
// integer s, where 0 < s < 16.
function Rand_init (S)H

Rand_x <- s
endfunc

// return the next random number,
function Rand_no () s

rand x (5 * rand_x + 3) mod 16
return (rand_x mod 12) // return 0 or 1

endfunc

Figure 2. An LCG Random Number Generator.

c o l) takes as arguments an array A, for the grid, and row and col forSubprogram Gen_cells(A,
its size. It returns a row-by-col board state in which each cell is randomly initialized to either ALIVE

3) row,

(2 marks)(represented by a 1) or DEAD (represented by a 0) via a random number generator.

subprogam Gen_cells(A, row, col)=
begin

for i from 1 to row do
for j from 1 to col do
A[i][j]= rand_no()
endfor

// randomly insert a 0 or 1:

endfor
endsubprogram

Turn Over
00/0795/3

i
l

6

r , c) counts the number of live neighbours in array A for the
(3 marks)

4) Subprogram count_live_neighs (A ,
cell at row r and column c .

count_live__neighs(A, r, c)
begin

i, j, count : Integer
for i from r-1 to r+1 do

for j from c-1 to c+1 do
if not ((i less than 0 OR j is less than 0) OR

(i greater than or equal to Row) OR
(j greater than or equal to Col)

// ensure cell indices are valid)
then

if(A[i][j] EQUAL 1) then
increment count

endif
endif

endfor
endfor
return count

endproc

Subprogram Next_Gen(A, B) generates into array B the next generation cells from array A. (4marks)
Next_Gen(A,B) =
begin

5)

for i from 1 to Row do
for j from 1 to Col do . •.

n_live = count_live_neighs(A,i,j)
if(A[i][j] EQUAL 1 AND

(n_live EQUAL 2 OR n_live EQUAL 3))

t

then
Set B[i][j] to 1

else if(A[i][j] EQUAL 0 AND n_live EQUAL 3) then
Set B[i][j] to 1 *

else
Set B[i][j] to 0 i

endif
endfor

endfor
endproc

Make sure the subprograms at least compile. Save your work, then print your source code.6) (2 marks)

00/0795/3 Go on to the next page

7

Task 3: Finalising with Displays (13 marks)
We exploit the algorithms from Task 2 to display and evolve the various generations of “Life”. Specifically, call existing
subprograms, where applicable, to complete each task.

In this answer booklet, exploit the algorithms in Task 2, to write the following:
(a) Subprogram PrintMat (A, row , col) to displays the board’s initial state.

7)

(2 marks)

(b) Subprogram PrintNextGen (B, col) to displays the board’s next generation. (2 marks)row,

8) In your IDE, develop executable subprograms from the algorithms in question (7). Your subprogram should
display a vertical bar (j) and appropriate number of spaces before each value printed, and a final bar at the end
of the row. Use subprogram row_line () to draw lines between rows. Your grid layout should be similar to
those in Figure 1. (3 marks)

9) Write a main program that calls the following subprogram in order to print and evolve the cellular automaton:
Rand_init (s) , Gen_cells (A , row , col) , PrintMat (A , row , col) , NextGen (A , B), and
PrintNextGen (B, row , col) .
Note: See Figure 2 for constraints on argument s in function Rand°init.
Print a copy of the entire source code.

t

(3 marks)
(1 mark)10)

Modify your program from Task 3(8) so that the row and column dimensions of the board is 8. Make sure the
program works correctly. Then run it and screen-capture its initial and next generation stages, save them in the

(2 marks)

1 1)

file called Size80utput, and then print a copy.

00/0795/3

