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Answer ALL 10 questions.
For your guidance, the approximate mark allocation for parts of each question is indicated.

Mathematical formulae and tables published by the Board, and noiseless non-programmeable electronic
calculators are allowed,

In calculations, you are advised to show all the steps in your working, giving your answer at each stage.
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a) Given that = uy, where u is a function of z, u = 0 , show that

dy 1 [ du]

dz u2

Hence, use the substitution £ = uy to transform the differential equation

IEB@ +(4x + 1)y2 = 3%y
dz: - -

‘into a differential equation involving u and z .
'b) Given the differential equation

— — 9y = €%,
dz?
Find the
i). complementary function,

if) particular integral of the differential equation.

" (2 marks)

(3 marks)

(2 marks)
(3 marks)

Z:

iii)

Given two vectors
a=zi—j+ 3k
b=i+j-2yk, z,yeZ,
and that axb=-i+7j+ 3k.

i) Find the values of the real constants, z and ¥.

i) Showthat a and b are linearly independent.
Find the Cartesian equation of the plane that contains a and b and passes through the

point with position vector i — j.

(3 marks)
(2 marks)

(4 marks)

3.

Solve the equation

b

cosh(lnz) — sinh(ln(%a:)) = % z > 0.

(6 marks)

Given that
4z
e (z-1)(z +1)(2® +1)’ alfe o

express f(z) in partial fractions.

Hence, show that

[ f(z)dn = 111(3].

(4 marks)

(4 marks)

/|

bR

a) Show that the set of matrices of the form

a —b .
[ ],where a,b € R, a = 0,
b a

forms a group under matrix multiplication (Assume Associativity),
b) Solve the linear congruence

22 + 8 = 5(mod11),

giving your answer in the form & = pA + ¢, where p,q € N anq ) € Z.
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(5 marks)

(5 marks)
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6. Show that the curve with polar coordinates ( r, ()) where,

B 2
1—3sin%2g’
represents a hyperbola. -(3 marks)
Find in polar form, the equations of the asymptotes to this hyperbola. (5 marks)
7. a) Solve completely the complex equation
2B = _97; (4 marks)
b) Find the centre and scale factor of the transformation described by
w=3z+42— (3 marks)
8. a) The parametric equations of a curve are
T
= a(tan@ — 9) and y = alnsech, 0 < § < 3’
where a is a real constant.
Find the length of arc of this curve. (5 marks)
b) A transformation T is defined by matrix M, where
M 1 2
2 5
i)  Find the determinant of M. (2 marks)
ii)  Find the invariant point under T, (2 marks)
iii)  Show that the image of the line
L : -z = 2y is the line L': Oz = 4y. (2 marks)
iv)  Hence or otherwise, find the angle of rotation under 7. (1 mark)
9. a) A sequence, (u,), is defined by
ty = 8, Upig =4, +3, VYneN,
Consider another sequence, (v, ), defined by
v, = u, —4. '
i) Find (v, ,,) interms of (v,). (3 marks)
ii) Hence, deduce that (v,) is a geometric progression and state its common ratio. (2 marks)
iii) Find expressions for (v,) and also for (u, )in terms of n. = (4 marks)
iv) Show that (u,) isan increasing sequence. (3 marks)
b) Find the radius of convergence of the series,
00 51;
Z - ™. (3 marks)
mon’ +1
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10. Given the function f, where,

f(m) _ Inz ,

T -1
i) find the domain of f .
ii) Evaluate

lim f(:z:)

=0t

lm} f(z) and
lim f(z) .

T—00
Hence or otherwise,

iii) find the asymptotes to the curve = f (sc )

iv) redefine f so that it is continuous at x = 1.
Furthermore, using the relationship 1 =k Inz >1,

V) investigate f and draw its variation table

vi) Sketch the curve of i = .f(a: )

(2 marks)

(4 marks)

(2 marks)
(2 marks)

(3 marks)
(2 marks)
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