cameroon gce advance level June 2016 math with mechanics paper 1
cameroon gce advance level June 2016 math with mechanics paper 1
A function/(x)is continuous in the
interval [a,b ] and differentiable on the
interval (a, b). The mean value theorem
states that there exists a valuec, where
a < c < b, such that lim x -> 0 X
A 0
B – 1
C co
D 1
12. Using the substitutions u = 1 + x 2 A f ( b ) + /(a)
/'(c) =
f 2x( l + x 2 )3dx =
Jo
a — b
B m – /(a)
/'(c) =
b — a
/'(a) ~ f’ (b) ‘
b – a
f’ ( b) – /'(a)
A 15 C
4 /'(C) =
B 7
D
4 /'(C)
C 1 a – b
D 17
* .
4
The tangent of the acute angle between the
lines y = 4x — 3 and y = x — 2 .is
17.
13.
2x + 1
dx
2x
3
A 1 A
x +-lnx + K
Ls
1
1+-x~,x + K
x + 2 In 2x + K
55
B B
3
c 2 ••.
C
5
D x + 2 In x + K 5
D
3
Using De Moiver’s theorem, the complex
number
(cos 9 + i sin 0)sis equal to
14.
The general solution of the differential
equation 3—dx = x 2 + x
18.
t
1 /x2 1
1( x2 1
y =
3 T + xJ + C
A (cos 05 + tsin 65 ) A
+ c
B 5(sin 0 + i sin 0)
C (cos 50 + i sin 50) B
o\
D COS 6s + Lsms ) 1(1 XN
=
3 \x
_
C 2j + c
15. Given that u and vare coplanar vectors,
whereu = 2i — j + 6k andv = —3i + 5j + k,
u x v =
1 ( 1 x\
y =
D 3 [ x + 2 ) +